This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Every monoid is trivially a submonoid of itself. (Contributed by Stefan O'Rear, 15-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | submss.b | |- B = ( Base ` M ) |
|
| Assertion | submid | |- ( M e. Mnd -> B e. ( SubMnd ` M ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | submss.b | |- B = ( Base ` M ) |
|
| 2 | ssidd | |- ( M e. Mnd -> B C_ B ) |
|
| 3 | eqid | |- ( 0g ` M ) = ( 0g ` M ) |
|
| 4 | 1 3 | mndidcl | |- ( M e. Mnd -> ( 0g ` M ) e. B ) |
| 5 | 1 | ressid | |- ( M e. Mnd -> ( M |`s B ) = M ) |
| 6 | id | |- ( M e. Mnd -> M e. Mnd ) |
|
| 7 | 5 6 | eqeltrd | |- ( M e. Mnd -> ( M |`s B ) e. Mnd ) |
| 8 | eqid | |- ( M |`s B ) = ( M |`s B ) |
|
| 9 | 1 3 8 | issubm2 | |- ( M e. Mnd -> ( B e. ( SubMnd ` M ) <-> ( B C_ B /\ ( 0g ` M ) e. B /\ ( M |`s B ) e. Mnd ) ) ) |
| 10 | 2 4 7 9 | mpbir3and | |- ( M e. Mnd -> B e. ( SubMnd ` M ) ) |