This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum of two group sums expressed as mappings. (Contributed by AV, 4-Apr-2019) (Revised by AV, 9-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsummptfsadd.b | |- B = ( Base ` G ) |
|
| gsummptfsadd.z | |- .0. = ( 0g ` G ) |
||
| gsummptfsadd.p | |- .+ = ( +g ` G ) |
||
| gsummptfsadd.g | |- ( ph -> G e. CMnd ) |
||
| gsummptfsadd.a | |- ( ph -> A e. V ) |
||
| gsummptfsadd.c | |- ( ( ph /\ x e. A ) -> C e. B ) |
||
| gsummptfsadd.d | |- ( ( ph /\ x e. A ) -> D e. B ) |
||
| gsummptfsadd.f | |- ( ph -> F = ( x e. A |-> C ) ) |
||
| gsummptfsadd.h | |- ( ph -> H = ( x e. A |-> D ) ) |
||
| gsummptfsadd.w | |- ( ph -> F finSupp .0. ) |
||
| gsummptfsadd.v | |- ( ph -> H finSupp .0. ) |
||
| Assertion | gsummptfsadd | |- ( ph -> ( G gsum ( x e. A |-> ( C .+ D ) ) ) = ( ( G gsum F ) .+ ( G gsum H ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsummptfsadd.b | |- B = ( Base ` G ) |
|
| 2 | gsummptfsadd.z | |- .0. = ( 0g ` G ) |
|
| 3 | gsummptfsadd.p | |- .+ = ( +g ` G ) |
|
| 4 | gsummptfsadd.g | |- ( ph -> G e. CMnd ) |
|
| 5 | gsummptfsadd.a | |- ( ph -> A e. V ) |
|
| 6 | gsummptfsadd.c | |- ( ( ph /\ x e. A ) -> C e. B ) |
|
| 7 | gsummptfsadd.d | |- ( ( ph /\ x e. A ) -> D e. B ) |
|
| 8 | gsummptfsadd.f | |- ( ph -> F = ( x e. A |-> C ) ) |
|
| 9 | gsummptfsadd.h | |- ( ph -> H = ( x e. A |-> D ) ) |
|
| 10 | gsummptfsadd.w | |- ( ph -> F finSupp .0. ) |
|
| 11 | gsummptfsadd.v | |- ( ph -> H finSupp .0. ) |
|
| 12 | 5 6 7 8 9 | offval2 | |- ( ph -> ( F oF .+ H ) = ( x e. A |-> ( C .+ D ) ) ) |
| 13 | 12 | eqcomd | |- ( ph -> ( x e. A |-> ( C .+ D ) ) = ( F oF .+ H ) ) |
| 14 | 13 | oveq2d | |- ( ph -> ( G gsum ( x e. A |-> ( C .+ D ) ) ) = ( G gsum ( F oF .+ H ) ) ) |
| 15 | 8 6 | fmpt3d | |- ( ph -> F : A --> B ) |
| 16 | 9 7 | fmpt3d | |- ( ph -> H : A --> B ) |
| 17 | 1 2 3 4 5 15 16 10 11 | gsumadd | |- ( ph -> ( G gsum ( F oF .+ H ) ) = ( ( G gsum F ) .+ ( G gsum H ) ) ) |
| 18 | 14 17 | eqtrd | |- ( ph -> ( G gsum ( x e. A |-> ( C .+ D ) ) ) = ( ( G gsum F ) .+ ( G gsum H ) ) ) |