This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The centralizer of any subset in a commutative monoid is the whole monoid. (Contributed by Mario Carneiro, 3-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cntzcmn.b | |- B = ( Base ` G ) |
|
| cntzcmn.z | |- Z = ( Cntz ` G ) |
||
| Assertion | cntzcmn | |- ( ( G e. CMnd /\ S C_ B ) -> ( Z ` S ) = B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cntzcmn.b | |- B = ( Base ` G ) |
|
| 2 | cntzcmn.z | |- Z = ( Cntz ` G ) |
|
| 3 | 1 2 | cntzssv | |- ( Z ` S ) C_ B |
| 4 | 3 | a1i | |- ( ( G e. CMnd /\ S C_ B ) -> ( Z ` S ) C_ B ) |
| 5 | simpl1 | |- ( ( ( G e. CMnd /\ S C_ B /\ x e. B ) /\ y e. S ) -> G e. CMnd ) |
|
| 6 | simpl3 | |- ( ( ( G e. CMnd /\ S C_ B /\ x e. B ) /\ y e. S ) -> x e. B ) |
|
| 7 | simp2 | |- ( ( G e. CMnd /\ S C_ B /\ x e. B ) -> S C_ B ) |
|
| 8 | 7 | sselda | |- ( ( ( G e. CMnd /\ S C_ B /\ x e. B ) /\ y e. S ) -> y e. B ) |
| 9 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 10 | 1 9 | cmncom | |- ( ( G e. CMnd /\ x e. B /\ y e. B ) -> ( x ( +g ` G ) y ) = ( y ( +g ` G ) x ) ) |
| 11 | 5 6 8 10 | syl3anc | |- ( ( ( G e. CMnd /\ S C_ B /\ x e. B ) /\ y e. S ) -> ( x ( +g ` G ) y ) = ( y ( +g ` G ) x ) ) |
| 12 | 11 | ralrimiva | |- ( ( G e. CMnd /\ S C_ B /\ x e. B ) -> A. y e. S ( x ( +g ` G ) y ) = ( y ( +g ` G ) x ) ) |
| 13 | 1 9 2 | cntzel | |- ( ( S C_ B /\ x e. B ) -> ( x e. ( Z ` S ) <-> A. y e. S ( x ( +g ` G ) y ) = ( y ( +g ` G ) x ) ) ) |
| 14 | 13 | 3adant1 | |- ( ( G e. CMnd /\ S C_ B /\ x e. B ) -> ( x e. ( Z ` S ) <-> A. y e. S ( x ( +g ` G ) y ) = ( y ( +g ` G ) x ) ) ) |
| 15 | 12 14 | mpbird | |- ( ( G e. CMnd /\ S C_ B /\ x e. B ) -> x e. ( Z ` S ) ) |
| 16 | 15 | 3expia | |- ( ( G e. CMnd /\ S C_ B ) -> ( x e. B -> x e. ( Z ` S ) ) ) |
| 17 | 16 | ssrdv | |- ( ( G e. CMnd /\ S C_ B ) -> B C_ ( Z ` S ) ) |
| 18 | 4 17 | eqssd | |- ( ( G e. CMnd /\ S C_ B ) -> ( Z ` S ) = B ) |