This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inverse of a group element. (Contributed by NM, 26-Oct-2006) (Revised by Mario Carneiro, 15-Dec-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpinvfval.1 | |- X = ran G |
|
| grpinvfval.2 | |- U = ( GId ` G ) |
||
| grpinvfval.3 | |- N = ( inv ` G ) |
||
| Assertion | grpoinvval | |- ( ( G e. GrpOp /\ A e. X ) -> ( N ` A ) = ( iota_ y e. X ( y G A ) = U ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinvfval.1 | |- X = ran G |
|
| 2 | grpinvfval.2 | |- U = ( GId ` G ) |
|
| 3 | grpinvfval.3 | |- N = ( inv ` G ) |
|
| 4 | 1 2 3 | grpoinvfval | |- ( G e. GrpOp -> N = ( x e. X |-> ( iota_ y e. X ( y G x ) = U ) ) ) |
| 5 | 4 | fveq1d | |- ( G e. GrpOp -> ( N ` A ) = ( ( x e. X |-> ( iota_ y e. X ( y G x ) = U ) ) ` A ) ) |
| 6 | oveq2 | |- ( x = A -> ( y G x ) = ( y G A ) ) |
|
| 7 | 6 | eqeq1d | |- ( x = A -> ( ( y G x ) = U <-> ( y G A ) = U ) ) |
| 8 | 7 | riotabidv | |- ( x = A -> ( iota_ y e. X ( y G x ) = U ) = ( iota_ y e. X ( y G A ) = U ) ) |
| 9 | eqid | |- ( x e. X |-> ( iota_ y e. X ( y G x ) = U ) ) = ( x e. X |-> ( iota_ y e. X ( y G x ) = U ) ) |
|
| 10 | riotaex | |- ( iota_ y e. X ( y G A ) = U ) e. _V |
|
| 11 | 8 9 10 | fvmpt | |- ( A e. X -> ( ( x e. X |-> ( iota_ y e. X ( y G x ) = U ) ) ` A ) = ( iota_ y e. X ( y G A ) = U ) ) |
| 12 | 5 11 | sylan9eq | |- ( ( G e. GrpOp /\ A e. X ) -> ( N ` A ) = ( iota_ y e. X ( y G A ) = U ) ) |