This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for grpoidinv . (Contributed by NM, 14-Oct-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | grpfo.1 | |- X = ran G |
|
| Assertion | grpoidinvlem4 | |- ( ( ( G e. GrpOp /\ A e. X ) /\ E. y e. X ( ( y G A ) = U /\ ( A G y ) = U ) ) -> ( A G U ) = ( U G A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpfo.1 | |- X = ran G |
|
| 2 | simpll | |- ( ( ( G e. GrpOp /\ A e. X ) /\ y e. X ) -> G e. GrpOp ) |
|
| 3 | simplr | |- ( ( ( G e. GrpOp /\ A e. X ) /\ y e. X ) -> A e. X ) |
|
| 4 | simpr | |- ( ( ( G e. GrpOp /\ A e. X ) /\ y e. X ) -> y e. X ) |
|
| 5 | 1 | grpoass | |- ( ( G e. GrpOp /\ ( A e. X /\ y e. X /\ A e. X ) ) -> ( ( A G y ) G A ) = ( A G ( y G A ) ) ) |
| 6 | 2 3 4 3 5 | syl13anc | |- ( ( ( G e. GrpOp /\ A e. X ) /\ y e. X ) -> ( ( A G y ) G A ) = ( A G ( y G A ) ) ) |
| 7 | oveq2 | |- ( ( y G A ) = U -> ( A G ( y G A ) ) = ( A G U ) ) |
|
| 8 | 6 7 | sylan9eq | |- ( ( ( ( G e. GrpOp /\ A e. X ) /\ y e. X ) /\ ( y G A ) = U ) -> ( ( A G y ) G A ) = ( A G U ) ) |
| 9 | oveq1 | |- ( ( A G y ) = U -> ( ( A G y ) G A ) = ( U G A ) ) |
|
| 10 | 8 9 | sylan9req | |- ( ( ( ( ( G e. GrpOp /\ A e. X ) /\ y e. X ) /\ ( y G A ) = U ) /\ ( A G y ) = U ) -> ( A G U ) = ( U G A ) ) |
| 11 | 10 | anasss | |- ( ( ( ( G e. GrpOp /\ A e. X ) /\ y e. X ) /\ ( ( y G A ) = U /\ ( A G y ) = U ) ) -> ( A G U ) = ( U G A ) ) |
| 12 | 11 | r19.29an | |- ( ( ( G e. GrpOp /\ A e. X ) /\ E. y e. X ( ( y G A ) = U /\ ( A G y ) = U ) ) -> ( A G U ) = ( U G A ) ) |