This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inverse function of the trivial group. (Contributed by FL, 21-Jun-2010) (Revised by AV, 26-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | grp1.m | |- M = { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. } |
|
| Assertion | grp1inv | |- ( I e. V -> ( invg ` M ) = ( _I |` { I } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grp1.m | |- M = { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. } |
|
| 2 | 1 | grp1 | |- ( I e. V -> M e. Grp ) |
| 3 | snex | |- { I } e. _V |
|
| 4 | 1 | grpbase | |- ( { I } e. _V -> { I } = ( Base ` M ) ) |
| 5 | 3 4 | ax-mp | |- { I } = ( Base ` M ) |
| 6 | eqid | |- ( invg ` M ) = ( invg ` M ) |
|
| 7 | 5 6 | grpinvf | |- ( M e. Grp -> ( invg ` M ) : { I } --> { I } ) |
| 8 | 2 7 | syl | |- ( I e. V -> ( invg ` M ) : { I } --> { I } ) |
| 9 | fsng | |- ( ( I e. V /\ I e. V ) -> ( ( invg ` M ) : { I } --> { I } <-> ( invg ` M ) = { <. I , I >. } ) ) |
|
| 10 | 9 | anidms | |- ( I e. V -> ( ( invg ` M ) : { I } --> { I } <-> ( invg ` M ) = { <. I , I >. } ) ) |
| 11 | simpr | |- ( ( I e. V /\ ( invg ` M ) = { <. I , I >. } ) -> ( invg ` M ) = { <. I , I >. } ) |
|
| 12 | restidsing | |- ( _I |` { I } ) = ( { I } X. { I } ) |
|
| 13 | xpsng | |- ( ( I e. V /\ I e. V ) -> ( { I } X. { I } ) = { <. I , I >. } ) |
|
| 14 | 13 | anidms | |- ( I e. V -> ( { I } X. { I } ) = { <. I , I >. } ) |
| 15 | 12 14 | eqtr2id | |- ( I e. V -> { <. I , I >. } = ( _I |` { I } ) ) |
| 16 | 15 | adantr | |- ( ( I e. V /\ ( invg ` M ) = { <. I , I >. } ) -> { <. I , I >. } = ( _I |` { I } ) ) |
| 17 | 11 16 | eqtrd | |- ( ( I e. V /\ ( invg ` M ) = { <. I , I >. } ) -> ( invg ` M ) = ( _I |` { I } ) ) |
| 18 | 17 | ex | |- ( I e. V -> ( ( invg ` M ) = { <. I , I >. } -> ( invg ` M ) = ( _I |` { I } ) ) ) |
| 19 | 10 18 | sylbid | |- ( I e. V -> ( ( invg ` M ) : { I } --> { I } -> ( invg ` M ) = ( _I |` { I } ) ) ) |
| 20 | 8 19 | mpd | |- ( I e. V -> ( invg ` M ) = ( _I |` { I } ) ) |