This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The singleton element of atrivial monoid is its identity element. (Contributed by AV, 23-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | mnd1.m | |- M = { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. } |
|
| Assertion | mnd1id | |- ( I e. V -> ( 0g ` M ) = I ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mnd1.m | |- M = { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. } |
|
| 2 | snex | |- { I } e. _V |
|
| 3 | 1 | grpbase | |- ( { I } e. _V -> { I } = ( Base ` M ) ) |
| 4 | 2 3 | ax-mp | |- { I } = ( Base ` M ) |
| 5 | eqid | |- ( 0g ` M ) = ( 0g ` M ) |
|
| 6 | snex | |- { <. <. I , I >. , I >. } e. _V |
|
| 7 | 1 | grpplusg | |- ( { <. <. I , I >. , I >. } e. _V -> { <. <. I , I >. , I >. } = ( +g ` M ) ) |
| 8 | 6 7 | ax-mp | |- { <. <. I , I >. , I >. } = ( +g ` M ) |
| 9 | snidg | |- ( I e. V -> I e. { I } ) |
|
| 10 | velsn | |- ( a e. { I } <-> a = I ) |
|
| 11 | df-ov | |- ( I { <. <. I , I >. , I >. } I ) = ( { <. <. I , I >. , I >. } ` <. I , I >. ) |
|
| 12 | opex | |- <. I , I >. e. _V |
|
| 13 | fvsng | |- ( ( <. I , I >. e. _V /\ I e. V ) -> ( { <. <. I , I >. , I >. } ` <. I , I >. ) = I ) |
|
| 14 | 12 13 | mpan | |- ( I e. V -> ( { <. <. I , I >. , I >. } ` <. I , I >. ) = I ) |
| 15 | 11 14 | eqtrid | |- ( I e. V -> ( I { <. <. I , I >. , I >. } I ) = I ) |
| 16 | oveq2 | |- ( a = I -> ( I { <. <. I , I >. , I >. } a ) = ( I { <. <. I , I >. , I >. } I ) ) |
|
| 17 | id | |- ( a = I -> a = I ) |
|
| 18 | 16 17 | eqeq12d | |- ( a = I -> ( ( I { <. <. I , I >. , I >. } a ) = a <-> ( I { <. <. I , I >. , I >. } I ) = I ) ) |
| 19 | 15 18 | syl5ibrcom | |- ( I e. V -> ( a = I -> ( I { <. <. I , I >. , I >. } a ) = a ) ) |
| 20 | 10 19 | biimtrid | |- ( I e. V -> ( a e. { I } -> ( I { <. <. I , I >. , I >. } a ) = a ) ) |
| 21 | 20 | imp | |- ( ( I e. V /\ a e. { I } ) -> ( I { <. <. I , I >. , I >. } a ) = a ) |
| 22 | oveq1 | |- ( a = I -> ( a { <. <. I , I >. , I >. } I ) = ( I { <. <. I , I >. , I >. } I ) ) |
|
| 23 | 22 17 | eqeq12d | |- ( a = I -> ( ( a { <. <. I , I >. , I >. } I ) = a <-> ( I { <. <. I , I >. , I >. } I ) = I ) ) |
| 24 | 15 23 | syl5ibrcom | |- ( I e. V -> ( a = I -> ( a { <. <. I , I >. , I >. } I ) = a ) ) |
| 25 | 10 24 | biimtrid | |- ( I e. V -> ( a e. { I } -> ( a { <. <. I , I >. , I >. } I ) = a ) ) |
| 26 | 25 | imp | |- ( ( I e. V /\ a e. { I } ) -> ( a { <. <. I , I >. , I >. } I ) = a ) |
| 27 | 4 5 8 9 21 26 | ismgmid2 | |- ( I e. V -> I = ( 0g ` M ) ) |
| 28 | 27 | eqcomd | |- ( I e. V -> ( 0g ` M ) = I ) |