This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: For two locally isomorphic graphs G and H and a vertex A of G there is a bijection f mapping the closed neighborhood N of A onto the closed neighborhood M of ( FA ) , so that the mapped vertices of an edge { A , B } containing the vertex A is an edge between the vertices in M . (Contributed by AV, 27-Dec-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clnbgrvtxedg.n | |- N = ( G ClNeighbVtx A ) |
|
| clnbgrvtxedg.i | |- I = ( Edg ` G ) |
||
| clnbgrvtxedg.k | |- K = { x e. I | x C_ N } |
||
| grlimedgclnbgr.m | |- M = ( H ClNeighbVtx ( F ` A ) ) |
||
| grlimedgclnbgr.j | |- J = ( Edg ` H ) |
||
| grlimedgclnbgr.l | |- L = { x e. J | x C_ M } |
||
| Assertion | grlimprclnbgredg | |- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( A e. V /\ B e. W /\ { A , B } e. I ) ) -> E. f ( f : N -1-1-onto-> M /\ { ( f ` A ) , ( f ` B ) } e. L ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clnbgrvtxedg.n | |- N = ( G ClNeighbVtx A ) |
|
| 2 | clnbgrvtxedg.i | |- I = ( Edg ` G ) |
|
| 3 | clnbgrvtxedg.k | |- K = { x e. I | x C_ N } |
|
| 4 | grlimedgclnbgr.m | |- M = ( H ClNeighbVtx ( F ` A ) ) |
|
| 5 | grlimedgclnbgr.j | |- J = ( Edg ` H ) |
|
| 6 | grlimedgclnbgr.l | |- L = { x e. J | x C_ M } |
|
| 7 | 1 2 3 4 5 6 | grlimprclnbgr | |- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( A e. V /\ B e. W /\ { A , B } e. I ) ) -> E. f E. g ( f : N -1-1-onto-> M /\ g : K -1-1-onto-> L /\ { ( f ` A ) , ( f ` B ) } = ( g ` { A , B } ) ) ) |
| 8 | simpr1 | |- ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( A e. V /\ B e. W /\ { A , B } e. I ) ) /\ ( f : N -1-1-onto-> M /\ g : K -1-1-onto-> L /\ { ( f ` A ) , ( f ` B ) } = ( g ` { A , B } ) ) ) -> f : N -1-1-onto-> M ) |
|
| 9 | f1of | |- ( g : K -1-1-onto-> L -> g : K --> L ) |
|
| 10 | 9 | 3ad2ant2 | |- ( ( f : N -1-1-onto-> M /\ g : K -1-1-onto-> L /\ { ( f ` A ) , ( f ` B ) } = ( g ` { A , B } ) ) -> g : K --> L ) |
| 11 | 10 | adantl | |- ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( A e. V /\ B e. W /\ { A , B } e. I ) ) /\ ( f : N -1-1-onto-> M /\ g : K -1-1-onto-> L /\ { ( f ` A ) , ( f ` B ) } = ( g ` { A , B } ) ) ) -> g : K --> L ) |
| 12 | uspgruhgr | |- ( G e. USPGraph -> G e. UHGraph ) |
|
| 13 | 12 | adantr | |- ( ( G e. USPGraph /\ H e. USPGraph ) -> G e. UHGraph ) |
| 14 | 13 | 3ad2ant1 | |- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( A e. V /\ B e. W /\ { A , B } e. I ) ) -> G e. UHGraph ) |
| 15 | simp33 | |- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( A e. V /\ B e. W /\ { A , B } e. I ) ) -> { A , B } e. I ) |
|
| 16 | prid1g | |- ( A e. V -> A e. { A , B } ) |
|
| 17 | 16 | 3ad2ant1 | |- ( ( A e. V /\ B e. W /\ { A , B } e. I ) -> A e. { A , B } ) |
| 18 | 17 | 3ad2ant3 | |- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( A e. V /\ B e. W /\ { A , B } e. I ) ) -> A e. { A , B } ) |
| 19 | 14 15 18 | 3jca | |- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( A e. V /\ B e. W /\ { A , B } e. I ) ) -> ( G e. UHGraph /\ { A , B } e. I /\ A e. { A , B } ) ) |
| 20 | 19 | adantr | |- ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( A e. V /\ B e. W /\ { A , B } e. I ) ) /\ ( f : N -1-1-onto-> M /\ g : K -1-1-onto-> L /\ { ( f ` A ) , ( f ` B ) } = ( g ` { A , B } ) ) ) -> ( G e. UHGraph /\ { A , B } e. I /\ A e. { A , B } ) ) |
| 21 | 1 2 3 | clnbgrvtxedg | |- ( ( G e. UHGraph /\ { A , B } e. I /\ A e. { A , B } ) -> { A , B } e. K ) |
| 22 | 20 21 | syl | |- ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( A e. V /\ B e. W /\ { A , B } e. I ) ) /\ ( f : N -1-1-onto-> M /\ g : K -1-1-onto-> L /\ { ( f ` A ) , ( f ` B ) } = ( g ` { A , B } ) ) ) -> { A , B } e. K ) |
| 23 | 11 22 | ffvelcdmd | |- ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( A e. V /\ B e. W /\ { A , B } e. I ) ) /\ ( f : N -1-1-onto-> M /\ g : K -1-1-onto-> L /\ { ( f ` A ) , ( f ` B ) } = ( g ` { A , B } ) ) ) -> ( g ` { A , B } ) e. L ) |
| 24 | eleq1 | |- ( { ( f ` A ) , ( f ` B ) } = ( g ` { A , B } ) -> ( { ( f ` A ) , ( f ` B ) } e. L <-> ( g ` { A , B } ) e. L ) ) |
|
| 25 | 24 | 3ad2ant3 | |- ( ( f : N -1-1-onto-> M /\ g : K -1-1-onto-> L /\ { ( f ` A ) , ( f ` B ) } = ( g ` { A , B } ) ) -> ( { ( f ` A ) , ( f ` B ) } e. L <-> ( g ` { A , B } ) e. L ) ) |
| 26 | 25 | adantl | |- ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( A e. V /\ B e. W /\ { A , B } e. I ) ) /\ ( f : N -1-1-onto-> M /\ g : K -1-1-onto-> L /\ { ( f ` A ) , ( f ` B ) } = ( g ` { A , B } ) ) ) -> ( { ( f ` A ) , ( f ` B ) } e. L <-> ( g ` { A , B } ) e. L ) ) |
| 27 | 23 26 | mpbird | |- ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( A e. V /\ B e. W /\ { A , B } e. I ) ) /\ ( f : N -1-1-onto-> M /\ g : K -1-1-onto-> L /\ { ( f ` A ) , ( f ` B ) } = ( g ` { A , B } ) ) ) -> { ( f ` A ) , ( f ` B ) } e. L ) |
| 28 | 8 27 | jca | |- ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( A e. V /\ B e. W /\ { A , B } e. I ) ) /\ ( f : N -1-1-onto-> M /\ g : K -1-1-onto-> L /\ { ( f ` A ) , ( f ` B ) } = ( g ` { A , B } ) ) ) -> ( f : N -1-1-onto-> M /\ { ( f ` A ) , ( f ` B ) } e. L ) ) |
| 29 | 28 | ex | |- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( A e. V /\ B e. W /\ { A , B } e. I ) ) -> ( ( f : N -1-1-onto-> M /\ g : K -1-1-onto-> L /\ { ( f ` A ) , ( f ` B ) } = ( g ` { A , B } ) ) -> ( f : N -1-1-onto-> M /\ { ( f ` A ) , ( f ` B ) } e. L ) ) ) |
| 30 | 29 | exlimdv | |- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( A e. V /\ B e. W /\ { A , B } e. I ) ) -> ( E. g ( f : N -1-1-onto-> M /\ g : K -1-1-onto-> L /\ { ( f ` A ) , ( f ` B ) } = ( g ` { A , B } ) ) -> ( f : N -1-1-onto-> M /\ { ( f ` A ) , ( f ` B ) } e. L ) ) ) |
| 31 | 30 | eximdv | |- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( A e. V /\ B e. W /\ { A , B } e. I ) ) -> ( E. f E. g ( f : N -1-1-onto-> M /\ g : K -1-1-onto-> L /\ { ( f ` A ) , ( f ` B ) } = ( g ` { A , B } ) ) -> E. f ( f : N -1-1-onto-> M /\ { ( f ` A ) , ( f ` B ) } e. L ) ) ) |
| 32 | 7 31 | mpd | |- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( A e. V /\ B e. W /\ { A , B } e. I ) ) -> E. f ( f : N -1-1-onto-> M /\ { ( f ` A ) , ( f ` B ) } e. L ) ) |