This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a (not necessarily proper) unordered pair containing a vertex is an edge, the other vertex is in the closed neighborhood of the first vertex. (Contributed by AV, 23-Aug-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | predgclnbgrel.v | |- V = ( Vtx ` G ) |
|
| predgclnbgrel.e | |- E = ( Edg ` G ) |
||
| Assertion | predgclnbgrel | |- ( ( N e. V /\ X e. V /\ { X , N } e. E ) -> N e. ( G ClNeighbVtx X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | predgclnbgrel.v | |- V = ( Vtx ` G ) |
|
| 2 | predgclnbgrel.e | |- E = ( Edg ` G ) |
|
| 3 | 3simpa | |- ( ( N e. V /\ X e. V /\ { X , N } e. E ) -> ( N e. V /\ X e. V ) ) |
|
| 4 | simp3 | |- ( ( N e. V /\ X e. V /\ { X , N } e. E ) -> { X , N } e. E ) |
|
| 5 | sseq2 | |- ( e = { X , N } -> ( { X , N } C_ e <-> { X , N } C_ { X , N } ) ) |
|
| 6 | 5 | adantl | |- ( ( ( N e. V /\ X e. V /\ { X , N } e. E ) /\ e = { X , N } ) -> ( { X , N } C_ e <-> { X , N } C_ { X , N } ) ) |
| 7 | ssidd | |- ( ( N e. V /\ X e. V /\ { X , N } e. E ) -> { X , N } C_ { X , N } ) |
|
| 8 | 4 6 7 | rspcedvd | |- ( ( N e. V /\ X e. V /\ { X , N } e. E ) -> E. e e. E { X , N } C_ e ) |
| 9 | 8 | olcd | |- ( ( N e. V /\ X e. V /\ { X , N } e. E ) -> ( N = X \/ E. e e. E { X , N } C_ e ) ) |
| 10 | 1 2 | clnbgrel | |- ( N e. ( G ClNeighbVtx X ) <-> ( ( N e. V /\ X e. V ) /\ ( N = X \/ E. e e. E { X , N } C_ e ) ) ) |
| 11 | 3 9 10 | sylanbrc | |- ( ( N e. V /\ X e. V /\ { X , N } e. E ) -> N e. ( G ClNeighbVtx X ) ) |