This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: 3-variable restricted existential specialization, using implicit substitution. (Contributed by NM, 25-Jul-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rspc3v.1 | |- ( x = A -> ( ph <-> ch ) ) |
|
| rspc3v.2 | |- ( y = B -> ( ch <-> th ) ) |
||
| rspc3v.3 | |- ( z = C -> ( th <-> ps ) ) |
||
| Assertion | rspc3ev | |- ( ( ( A e. R /\ B e. S /\ C e. T ) /\ ps ) -> E. x e. R E. y e. S E. z e. T ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspc3v.1 | |- ( x = A -> ( ph <-> ch ) ) |
|
| 2 | rspc3v.2 | |- ( y = B -> ( ch <-> th ) ) |
|
| 3 | rspc3v.3 | |- ( z = C -> ( th <-> ps ) ) |
|
| 4 | simpl1 | |- ( ( ( A e. R /\ B e. S /\ C e. T ) /\ ps ) -> A e. R ) |
|
| 5 | simpl2 | |- ( ( ( A e. R /\ B e. S /\ C e. T ) /\ ps ) -> B e. S ) |
|
| 6 | 3 | rspcev | |- ( ( C e. T /\ ps ) -> E. z e. T th ) |
| 7 | 6 | 3ad2antl3 | |- ( ( ( A e. R /\ B e. S /\ C e. T ) /\ ps ) -> E. z e. T th ) |
| 8 | 1 | rexbidv | |- ( x = A -> ( E. z e. T ph <-> E. z e. T ch ) ) |
| 9 | 2 | rexbidv | |- ( y = B -> ( E. z e. T ch <-> E. z e. T th ) ) |
| 10 | 8 9 | rspc2ev | |- ( ( A e. R /\ B e. S /\ E. z e. T th ) -> E. x e. R E. y e. S E. z e. T ph ) |
| 11 | 4 5 7 10 | syl3anc | |- ( ( ( A e. R /\ B e. S /\ C e. T ) /\ ps ) -> E. x e. R E. y e. S E. z e. T ph ) |