This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of ghmlin as of 15-Mar-2020. Linearity of a group homomorphism. (Contributed by Paul Chapman, 3-Mar-2008) (New usage is discouraged.) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ghomlinOLD.1 | |- X = ran G |
|
| Assertion | ghomlinOLD | |- ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( A e. X /\ B e. X ) ) -> ( ( F ` A ) H ( F ` B ) ) = ( F ` ( A G B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ghomlinOLD.1 | |- X = ran G |
|
| 2 | eqid | |- ran H = ran H |
|
| 3 | 1 2 | elghomOLD | |- ( ( G e. GrpOp /\ H e. GrpOp ) -> ( F e. ( G GrpOpHom H ) <-> ( F : X --> ran H /\ A. x e. X A. y e. X ( ( F ` x ) H ( F ` y ) ) = ( F ` ( x G y ) ) ) ) ) |
| 4 | 3 | biimp3a | |- ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) -> ( F : X --> ran H /\ A. x e. X A. y e. X ( ( F ` x ) H ( F ` y ) ) = ( F ` ( x G y ) ) ) ) |
| 5 | 4 | simprd | |- ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) -> A. x e. X A. y e. X ( ( F ` x ) H ( F ` y ) ) = ( F ` ( x G y ) ) ) |
| 6 | fveq2 | |- ( x = A -> ( F ` x ) = ( F ` A ) ) |
|
| 7 | 6 | oveq1d | |- ( x = A -> ( ( F ` x ) H ( F ` y ) ) = ( ( F ` A ) H ( F ` y ) ) ) |
| 8 | oveq1 | |- ( x = A -> ( x G y ) = ( A G y ) ) |
|
| 9 | 8 | fveq2d | |- ( x = A -> ( F ` ( x G y ) ) = ( F ` ( A G y ) ) ) |
| 10 | 7 9 | eqeq12d | |- ( x = A -> ( ( ( F ` x ) H ( F ` y ) ) = ( F ` ( x G y ) ) <-> ( ( F ` A ) H ( F ` y ) ) = ( F ` ( A G y ) ) ) ) |
| 11 | fveq2 | |- ( y = B -> ( F ` y ) = ( F ` B ) ) |
|
| 12 | 11 | oveq2d | |- ( y = B -> ( ( F ` A ) H ( F ` y ) ) = ( ( F ` A ) H ( F ` B ) ) ) |
| 13 | oveq2 | |- ( y = B -> ( A G y ) = ( A G B ) ) |
|
| 14 | 13 | fveq2d | |- ( y = B -> ( F ` ( A G y ) ) = ( F ` ( A G B ) ) ) |
| 15 | 12 14 | eqeq12d | |- ( y = B -> ( ( ( F ` A ) H ( F ` y ) ) = ( F ` ( A G y ) ) <-> ( ( F ` A ) H ( F ` B ) ) = ( F ` ( A G B ) ) ) ) |
| 16 | 10 15 | rspc2v | |- ( ( A e. X /\ B e. X ) -> ( A. x e. X A. y e. X ( ( F ` x ) H ( F ` y ) ) = ( F ` ( x G y ) ) -> ( ( F ` A ) H ( F ` B ) ) = ( F ` ( A G B ) ) ) ) |
| 17 | 5 16 | mpan9 | |- ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( A e. X /\ B e. X ) ) -> ( ( F ` A ) H ( F ` B ) ) = ( F ` ( A G B ) ) ) |