This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An equivalent formulation of the generalized continuum hypothesis. (Contributed by Mario Carneiro, 15-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gch3 | ⊢ ( GCH = V ↔ ∀ 𝑥 ∈ On ( ℵ ‘ suc 𝑥 ) ≈ 𝒫 ( ℵ ‘ 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | ⊢ ( ( GCH = V ∧ 𝑥 ∈ On ) → 𝑥 ∈ On ) | |
| 2 | fvex | ⊢ ( ℵ ‘ 𝑥 ) ∈ V | |
| 3 | simpl | ⊢ ( ( GCH = V ∧ 𝑥 ∈ On ) → GCH = V ) | |
| 4 | 2 3 | eleqtrrid | ⊢ ( ( GCH = V ∧ 𝑥 ∈ On ) → ( ℵ ‘ 𝑥 ) ∈ GCH ) |
| 5 | fvex | ⊢ ( ℵ ‘ suc 𝑥 ) ∈ V | |
| 6 | 5 3 | eleqtrrid | ⊢ ( ( GCH = V ∧ 𝑥 ∈ On ) → ( ℵ ‘ suc 𝑥 ) ∈ GCH ) |
| 7 | gchaleph2 | ⊢ ( ( 𝑥 ∈ On ∧ ( ℵ ‘ 𝑥 ) ∈ GCH ∧ ( ℵ ‘ suc 𝑥 ) ∈ GCH ) → ( ℵ ‘ suc 𝑥 ) ≈ 𝒫 ( ℵ ‘ 𝑥 ) ) | |
| 8 | 1 4 6 7 | syl3anc | ⊢ ( ( GCH = V ∧ 𝑥 ∈ On ) → ( ℵ ‘ suc 𝑥 ) ≈ 𝒫 ( ℵ ‘ 𝑥 ) ) |
| 9 | 8 | ralrimiva | ⊢ ( GCH = V → ∀ 𝑥 ∈ On ( ℵ ‘ suc 𝑥 ) ≈ 𝒫 ( ℵ ‘ 𝑥 ) ) |
| 10 | alephgch | ⊢ ( ( ℵ ‘ suc 𝑥 ) ≈ 𝒫 ( ℵ ‘ 𝑥 ) → ( ℵ ‘ 𝑥 ) ∈ GCH ) | |
| 11 | 10 | ralimi | ⊢ ( ∀ 𝑥 ∈ On ( ℵ ‘ suc 𝑥 ) ≈ 𝒫 ( ℵ ‘ 𝑥 ) → ∀ 𝑥 ∈ On ( ℵ ‘ 𝑥 ) ∈ GCH ) |
| 12 | alephfnon | ⊢ ℵ Fn On | |
| 13 | ffnfv | ⊢ ( ℵ : On ⟶ GCH ↔ ( ℵ Fn On ∧ ∀ 𝑥 ∈ On ( ℵ ‘ 𝑥 ) ∈ GCH ) ) | |
| 14 | 12 13 | mpbiran | ⊢ ( ℵ : On ⟶ GCH ↔ ∀ 𝑥 ∈ On ( ℵ ‘ 𝑥 ) ∈ GCH ) |
| 15 | 11 14 | sylibr | ⊢ ( ∀ 𝑥 ∈ On ( ℵ ‘ suc 𝑥 ) ≈ 𝒫 ( ℵ ‘ 𝑥 ) → ℵ : On ⟶ GCH ) |
| 16 | 15 | frnd | ⊢ ( ∀ 𝑥 ∈ On ( ℵ ‘ suc 𝑥 ) ≈ 𝒫 ( ℵ ‘ 𝑥 ) → ran ℵ ⊆ GCH ) |
| 17 | gch2 | ⊢ ( GCH = V ↔ ran ℵ ⊆ GCH ) | |
| 18 | 16 17 | sylibr | ⊢ ( ∀ 𝑥 ∈ On ( ℵ ‘ suc 𝑥 ) ≈ 𝒫 ( ℵ ‘ 𝑥 ) → GCH = V ) |
| 19 | 9 18 | impbii | ⊢ ( GCH = V ↔ ∀ 𝑥 ∈ On ( ℵ ‘ suc 𝑥 ) ≈ 𝒫 ( ℵ ‘ 𝑥 ) ) |