This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The action of a particular group element is left-cancelable. (Contributed by FL, 17-May-2010) (Revised by Mario Carneiro, 13-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | galcan.1 | |- X = ( Base ` G ) |
|
| Assertion | galcan | |- ( ( .(+) e. ( G GrpAct Y ) /\ ( A e. X /\ B e. Y /\ C e. Y ) ) -> ( ( A .(+) B ) = ( A .(+) C ) <-> B = C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | galcan.1 | |- X = ( Base ` G ) |
|
| 2 | oveq2 | |- ( ( A .(+) B ) = ( A .(+) C ) -> ( ( ( invg ` G ) ` A ) .(+) ( A .(+) B ) ) = ( ( ( invg ` G ) ` A ) .(+) ( A .(+) C ) ) ) |
|
| 3 | simpl | |- ( ( .(+) e. ( G GrpAct Y ) /\ ( A e. X /\ B e. Y /\ C e. Y ) ) -> .(+) e. ( G GrpAct Y ) ) |
|
| 4 | gagrp | |- ( .(+) e. ( G GrpAct Y ) -> G e. Grp ) |
|
| 5 | 3 4 | syl | |- ( ( .(+) e. ( G GrpAct Y ) /\ ( A e. X /\ B e. Y /\ C e. Y ) ) -> G e. Grp ) |
| 6 | simpr1 | |- ( ( .(+) e. ( G GrpAct Y ) /\ ( A e. X /\ B e. Y /\ C e. Y ) ) -> A e. X ) |
|
| 7 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 8 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 9 | eqid | |- ( invg ` G ) = ( invg ` G ) |
|
| 10 | 1 7 8 9 | grplinv | |- ( ( G e. Grp /\ A e. X ) -> ( ( ( invg ` G ) ` A ) ( +g ` G ) A ) = ( 0g ` G ) ) |
| 11 | 5 6 10 | syl2anc | |- ( ( .(+) e. ( G GrpAct Y ) /\ ( A e. X /\ B e. Y /\ C e. Y ) ) -> ( ( ( invg ` G ) ` A ) ( +g ` G ) A ) = ( 0g ` G ) ) |
| 12 | 11 | oveq1d | |- ( ( .(+) e. ( G GrpAct Y ) /\ ( A e. X /\ B e. Y /\ C e. Y ) ) -> ( ( ( ( invg ` G ) ` A ) ( +g ` G ) A ) .(+) B ) = ( ( 0g ` G ) .(+) B ) ) |
| 13 | 1 9 | grpinvcl | |- ( ( G e. Grp /\ A e. X ) -> ( ( invg ` G ) ` A ) e. X ) |
| 14 | 5 6 13 | syl2anc | |- ( ( .(+) e. ( G GrpAct Y ) /\ ( A e. X /\ B e. Y /\ C e. Y ) ) -> ( ( invg ` G ) ` A ) e. X ) |
| 15 | simpr2 | |- ( ( .(+) e. ( G GrpAct Y ) /\ ( A e. X /\ B e. Y /\ C e. Y ) ) -> B e. Y ) |
|
| 16 | 1 7 | gaass | |- ( ( .(+) e. ( G GrpAct Y ) /\ ( ( ( invg ` G ) ` A ) e. X /\ A e. X /\ B e. Y ) ) -> ( ( ( ( invg ` G ) ` A ) ( +g ` G ) A ) .(+) B ) = ( ( ( invg ` G ) ` A ) .(+) ( A .(+) B ) ) ) |
| 17 | 3 14 6 15 16 | syl13anc | |- ( ( .(+) e. ( G GrpAct Y ) /\ ( A e. X /\ B e. Y /\ C e. Y ) ) -> ( ( ( ( invg ` G ) ` A ) ( +g ` G ) A ) .(+) B ) = ( ( ( invg ` G ) ` A ) .(+) ( A .(+) B ) ) ) |
| 18 | 8 | gagrpid | |- ( ( .(+) e. ( G GrpAct Y ) /\ B e. Y ) -> ( ( 0g ` G ) .(+) B ) = B ) |
| 19 | 3 15 18 | syl2anc | |- ( ( .(+) e. ( G GrpAct Y ) /\ ( A e. X /\ B e. Y /\ C e. Y ) ) -> ( ( 0g ` G ) .(+) B ) = B ) |
| 20 | 12 17 19 | 3eqtr3d | |- ( ( .(+) e. ( G GrpAct Y ) /\ ( A e. X /\ B e. Y /\ C e. Y ) ) -> ( ( ( invg ` G ) ` A ) .(+) ( A .(+) B ) ) = B ) |
| 21 | 11 | oveq1d | |- ( ( .(+) e. ( G GrpAct Y ) /\ ( A e. X /\ B e. Y /\ C e. Y ) ) -> ( ( ( ( invg ` G ) ` A ) ( +g ` G ) A ) .(+) C ) = ( ( 0g ` G ) .(+) C ) ) |
| 22 | simpr3 | |- ( ( .(+) e. ( G GrpAct Y ) /\ ( A e. X /\ B e. Y /\ C e. Y ) ) -> C e. Y ) |
|
| 23 | 1 7 | gaass | |- ( ( .(+) e. ( G GrpAct Y ) /\ ( ( ( invg ` G ) ` A ) e. X /\ A e. X /\ C e. Y ) ) -> ( ( ( ( invg ` G ) ` A ) ( +g ` G ) A ) .(+) C ) = ( ( ( invg ` G ) ` A ) .(+) ( A .(+) C ) ) ) |
| 24 | 3 14 6 22 23 | syl13anc | |- ( ( .(+) e. ( G GrpAct Y ) /\ ( A e. X /\ B e. Y /\ C e. Y ) ) -> ( ( ( ( invg ` G ) ` A ) ( +g ` G ) A ) .(+) C ) = ( ( ( invg ` G ) ` A ) .(+) ( A .(+) C ) ) ) |
| 25 | 8 | gagrpid | |- ( ( .(+) e. ( G GrpAct Y ) /\ C e. Y ) -> ( ( 0g ` G ) .(+) C ) = C ) |
| 26 | 3 22 25 | syl2anc | |- ( ( .(+) e. ( G GrpAct Y ) /\ ( A e. X /\ B e. Y /\ C e. Y ) ) -> ( ( 0g ` G ) .(+) C ) = C ) |
| 27 | 21 24 26 | 3eqtr3d | |- ( ( .(+) e. ( G GrpAct Y ) /\ ( A e. X /\ B e. Y /\ C e. Y ) ) -> ( ( ( invg ` G ) ` A ) .(+) ( A .(+) C ) ) = C ) |
| 28 | 20 27 | eqeq12d | |- ( ( .(+) e. ( G GrpAct Y ) /\ ( A e. X /\ B e. Y /\ C e. Y ) ) -> ( ( ( ( invg ` G ) ` A ) .(+) ( A .(+) B ) ) = ( ( ( invg ` G ) ` A ) .(+) ( A .(+) C ) ) <-> B = C ) ) |
| 29 | 2 28 | imbitrid | |- ( ( .(+) e. ( G GrpAct Y ) /\ ( A e. X /\ B e. Y /\ C e. Y ) ) -> ( ( A .(+) B ) = ( A .(+) C ) -> B = C ) ) |
| 30 | oveq2 | |- ( B = C -> ( A .(+) B ) = ( A .(+) C ) ) |
|
| 31 | 29 30 | impbid1 | |- ( ( .(+) e. ( G GrpAct Y ) /\ ( A e. X /\ B e. Y /\ C e. Y ) ) -> ( ( A .(+) B ) = ( A .(+) C ) <-> B = C ) ) |