This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The action of a particular group element is left-cancelable. (Contributed by FL, 17-May-2010) (Revised by Mario Carneiro, 13-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | galcan.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| Assertion | galcan | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑌 ) ) → ( ( 𝐴 ⊕ 𝐵 ) = ( 𝐴 ⊕ 𝐶 ) ↔ 𝐵 = 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | galcan.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | oveq2 | ⊢ ( ( 𝐴 ⊕ 𝐵 ) = ( 𝐴 ⊕ 𝐶 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ⊕ ( 𝐴 ⊕ 𝐵 ) ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ⊕ ( 𝐴 ⊕ 𝐶 ) ) ) | |
| 3 | simpl | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑌 ) ) → ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ) | |
| 4 | gagrp | ⊢ ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) → 𝐺 ∈ Grp ) | |
| 5 | 3 4 | syl | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑌 ) ) → 𝐺 ∈ Grp ) |
| 6 | simpr1 | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑌 ) ) → 𝐴 ∈ 𝑋 ) | |
| 7 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 8 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 9 | eqid | ⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) | |
| 10 | 1 7 8 9 | grplinv | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ( +g ‘ 𝐺 ) 𝐴 ) = ( 0g ‘ 𝐺 ) ) |
| 11 | 5 6 10 | syl2anc | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑌 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ( +g ‘ 𝐺 ) 𝐴 ) = ( 0g ‘ 𝐺 ) ) |
| 12 | 11 | oveq1d | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑌 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ( +g ‘ 𝐺 ) 𝐴 ) ⊕ 𝐵 ) = ( ( 0g ‘ 𝐺 ) ⊕ 𝐵 ) ) |
| 13 | 1 9 | grpinvcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ∈ 𝑋 ) |
| 14 | 5 6 13 | syl2anc | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑌 ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ∈ 𝑋 ) |
| 15 | simpr2 | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑌 ) ) → 𝐵 ∈ 𝑌 ) | |
| 16 | 1 7 | gaass | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ( +g ‘ 𝐺 ) 𝐴 ) ⊕ 𝐵 ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ⊕ ( 𝐴 ⊕ 𝐵 ) ) ) |
| 17 | 3 14 6 15 16 | syl13anc | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑌 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ( +g ‘ 𝐺 ) 𝐴 ) ⊕ 𝐵 ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ⊕ ( 𝐴 ⊕ 𝐵 ) ) ) |
| 18 | 8 | gagrpid | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐵 ∈ 𝑌 ) → ( ( 0g ‘ 𝐺 ) ⊕ 𝐵 ) = 𝐵 ) |
| 19 | 3 15 18 | syl2anc | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑌 ) ) → ( ( 0g ‘ 𝐺 ) ⊕ 𝐵 ) = 𝐵 ) |
| 20 | 12 17 19 | 3eqtr3d | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑌 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ⊕ ( 𝐴 ⊕ 𝐵 ) ) = 𝐵 ) |
| 21 | 11 | oveq1d | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑌 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ( +g ‘ 𝐺 ) 𝐴 ) ⊕ 𝐶 ) = ( ( 0g ‘ 𝐺 ) ⊕ 𝐶 ) ) |
| 22 | simpr3 | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑌 ) ) → 𝐶 ∈ 𝑌 ) | |
| 23 | 1 7 | gaass | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑌 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ( +g ‘ 𝐺 ) 𝐴 ) ⊕ 𝐶 ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ⊕ ( 𝐴 ⊕ 𝐶 ) ) ) |
| 24 | 3 14 6 22 23 | syl13anc | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑌 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ( +g ‘ 𝐺 ) 𝐴 ) ⊕ 𝐶 ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ⊕ ( 𝐴 ⊕ 𝐶 ) ) ) |
| 25 | 8 | gagrpid | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐶 ∈ 𝑌 ) → ( ( 0g ‘ 𝐺 ) ⊕ 𝐶 ) = 𝐶 ) |
| 26 | 3 22 25 | syl2anc | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑌 ) ) → ( ( 0g ‘ 𝐺 ) ⊕ 𝐶 ) = 𝐶 ) |
| 27 | 21 24 26 | 3eqtr3d | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑌 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ⊕ ( 𝐴 ⊕ 𝐶 ) ) = 𝐶 ) |
| 28 | 20 27 | eqeq12d | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑌 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ⊕ ( 𝐴 ⊕ 𝐵 ) ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ⊕ ( 𝐴 ⊕ 𝐶 ) ) ↔ 𝐵 = 𝐶 ) ) |
| 29 | 2 28 | imbitrid | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑌 ) ) → ( ( 𝐴 ⊕ 𝐵 ) = ( 𝐴 ⊕ 𝐶 ) → 𝐵 = 𝐶 ) ) |
| 30 | oveq2 | ⊢ ( 𝐵 = 𝐶 → ( 𝐴 ⊕ 𝐵 ) = ( 𝐴 ⊕ 𝐶 ) ) | |
| 31 | 29 30 | impbid1 | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑌 ) ) → ( ( 𝐴 ⊕ 𝐵 ) = ( 𝐴 ⊕ 𝐶 ) ↔ 𝐵 = 𝐶 ) ) |