This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Join a predecessor to the beginning of a finite set of sequential integers. (Contributed by AV, 24-Aug-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzpred | |- ( N e. ( ZZ>= ` M ) -> ( M ... N ) = ( { M } u. ( ( M + 1 ) ... N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzel2 | |- ( N e. ( ZZ>= ` M ) -> M e. ZZ ) |
|
| 2 | uzid | |- ( M e. ZZ -> M e. ( ZZ>= ` M ) ) |
|
| 3 | peano2uz | |- ( M e. ( ZZ>= ` M ) -> ( M + 1 ) e. ( ZZ>= ` M ) ) |
|
| 4 | 1 2 3 | 3syl | |- ( N e. ( ZZ>= ` M ) -> ( M + 1 ) e. ( ZZ>= ` M ) ) |
| 5 | fzsplit2 | |- ( ( ( M + 1 ) e. ( ZZ>= ` M ) /\ N e. ( ZZ>= ` M ) ) -> ( M ... N ) = ( ( M ... M ) u. ( ( M + 1 ) ... N ) ) ) |
|
| 6 | 4 5 | mpancom | |- ( N e. ( ZZ>= ` M ) -> ( M ... N ) = ( ( M ... M ) u. ( ( M + 1 ) ... N ) ) ) |
| 7 | fzsn | |- ( M e. ZZ -> ( M ... M ) = { M } ) |
|
| 8 | 1 7 | syl | |- ( N e. ( ZZ>= ` M ) -> ( M ... M ) = { M } ) |
| 9 | 8 | uneq1d | |- ( N e. ( ZZ>= ` M ) -> ( ( M ... M ) u. ( ( M + 1 ) ... N ) ) = ( { M } u. ( ( M + 1 ) ... N ) ) ) |
| 10 | 6 9 | eqtrd | |- ( N e. ( ZZ>= ` M ) -> ( M ... N ) = ( { M } u. ( ( M + 1 ) ... N ) ) ) |