This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Shift membership in a finite sequence of naturals. (Contributed by Scott Fenton, 17-Jul-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fznatpl1 | |- ( ( N e. NN /\ I e. ( 1 ... ( N - 1 ) ) ) -> ( I + 1 ) e. ( 1 ... N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1red | |- ( ( N e. NN /\ I e. ( 1 ... ( N - 1 ) ) ) -> 1 e. RR ) |
|
| 2 | elfzelz | |- ( I e. ( 1 ... ( N - 1 ) ) -> I e. ZZ ) |
|
| 3 | 2 | zred | |- ( I e. ( 1 ... ( N - 1 ) ) -> I e. RR ) |
| 4 | 3 | adantl | |- ( ( N e. NN /\ I e. ( 1 ... ( N - 1 ) ) ) -> I e. RR ) |
| 5 | peano2re | |- ( I e. RR -> ( I + 1 ) e. RR ) |
|
| 6 | 4 5 | syl | |- ( ( N e. NN /\ I e. ( 1 ... ( N - 1 ) ) ) -> ( I + 1 ) e. RR ) |
| 7 | peano2re | |- ( 1 e. RR -> ( 1 + 1 ) e. RR ) |
|
| 8 | 1 7 | syl | |- ( ( N e. NN /\ I e. ( 1 ... ( N - 1 ) ) ) -> ( 1 + 1 ) e. RR ) |
| 9 | 1 | ltp1d | |- ( ( N e. NN /\ I e. ( 1 ... ( N - 1 ) ) ) -> 1 < ( 1 + 1 ) ) |
| 10 | elfzle1 | |- ( I e. ( 1 ... ( N - 1 ) ) -> 1 <_ I ) |
|
| 11 | 10 | adantl | |- ( ( N e. NN /\ I e. ( 1 ... ( N - 1 ) ) ) -> 1 <_ I ) |
| 12 | 1re | |- 1 e. RR |
|
| 13 | leadd1 | |- ( ( 1 e. RR /\ I e. RR /\ 1 e. RR ) -> ( 1 <_ I <-> ( 1 + 1 ) <_ ( I + 1 ) ) ) |
|
| 14 | 12 12 13 | mp3an13 | |- ( I e. RR -> ( 1 <_ I <-> ( 1 + 1 ) <_ ( I + 1 ) ) ) |
| 15 | 4 14 | syl | |- ( ( N e. NN /\ I e. ( 1 ... ( N - 1 ) ) ) -> ( 1 <_ I <-> ( 1 + 1 ) <_ ( I + 1 ) ) ) |
| 16 | 11 15 | mpbid | |- ( ( N e. NN /\ I e. ( 1 ... ( N - 1 ) ) ) -> ( 1 + 1 ) <_ ( I + 1 ) ) |
| 17 | 1 8 6 9 16 | ltletrd | |- ( ( N e. NN /\ I e. ( 1 ... ( N - 1 ) ) ) -> 1 < ( I + 1 ) ) |
| 18 | 1 6 17 | ltled | |- ( ( N e. NN /\ I e. ( 1 ... ( N - 1 ) ) ) -> 1 <_ ( I + 1 ) ) |
| 19 | elfzle2 | |- ( I e. ( 1 ... ( N - 1 ) ) -> I <_ ( N - 1 ) ) |
|
| 20 | 19 | adantl | |- ( ( N e. NN /\ I e. ( 1 ... ( N - 1 ) ) ) -> I <_ ( N - 1 ) ) |
| 21 | nnz | |- ( N e. NN -> N e. ZZ ) |
|
| 22 | 21 | adantr | |- ( ( N e. NN /\ I e. ( 1 ... ( N - 1 ) ) ) -> N e. ZZ ) |
| 23 | 22 | zred | |- ( ( N e. NN /\ I e. ( 1 ... ( N - 1 ) ) ) -> N e. RR ) |
| 24 | leaddsub | |- ( ( I e. RR /\ 1 e. RR /\ N e. RR ) -> ( ( I + 1 ) <_ N <-> I <_ ( N - 1 ) ) ) |
|
| 25 | 12 24 | mp3an2 | |- ( ( I e. RR /\ N e. RR ) -> ( ( I + 1 ) <_ N <-> I <_ ( N - 1 ) ) ) |
| 26 | 3 23 25 | syl2an2 | |- ( ( N e. NN /\ I e. ( 1 ... ( N - 1 ) ) ) -> ( ( I + 1 ) <_ N <-> I <_ ( N - 1 ) ) ) |
| 27 | 20 26 | mpbird | |- ( ( N e. NN /\ I e. ( 1 ... ( N - 1 ) ) ) -> ( I + 1 ) <_ N ) |
| 28 | 2 | peano2zd | |- ( I e. ( 1 ... ( N - 1 ) ) -> ( I + 1 ) e. ZZ ) |
| 29 | 1z | |- 1 e. ZZ |
|
| 30 | elfz | |- ( ( ( I + 1 ) e. ZZ /\ 1 e. ZZ /\ N e. ZZ ) -> ( ( I + 1 ) e. ( 1 ... N ) <-> ( 1 <_ ( I + 1 ) /\ ( I + 1 ) <_ N ) ) ) |
|
| 31 | 29 30 | mp3an2 | |- ( ( ( I + 1 ) e. ZZ /\ N e. ZZ ) -> ( ( I + 1 ) e. ( 1 ... N ) <-> ( 1 <_ ( I + 1 ) /\ ( I + 1 ) <_ N ) ) ) |
| 32 | 28 22 31 | syl2an2 | |- ( ( N e. NN /\ I e. ( 1 ... ( N - 1 ) ) ) -> ( ( I + 1 ) e. ( 1 ... N ) <-> ( 1 <_ ( I + 1 ) /\ ( I + 1 ) <_ N ) ) ) |
| 33 | 18 27 32 | mpbir2and | |- ( ( N e. NN /\ I e. ( 1 ... ( N - 1 ) ) ) -> ( I + 1 ) e. ( 1 ... N ) ) |