This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: No finite set of sequential integers equals an upper set of integers. (Contributed by NM, 11-Dec-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzneuz | |- ( ( N e. ( ZZ>= ` M ) /\ K e. ZZ ) -> -. ( M ... N ) = ( ZZ>= ` K ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano2uz | |- ( N e. ( ZZ>= ` K ) -> ( N + 1 ) e. ( ZZ>= ` K ) ) |
|
| 2 | eluzelre | |- ( N e. ( ZZ>= ` M ) -> N e. RR ) |
|
| 3 | ltp1 | |- ( N e. RR -> N < ( N + 1 ) ) |
|
| 4 | peano2re | |- ( N e. RR -> ( N + 1 ) e. RR ) |
|
| 5 | ltnle | |- ( ( N e. RR /\ ( N + 1 ) e. RR ) -> ( N < ( N + 1 ) <-> -. ( N + 1 ) <_ N ) ) |
|
| 6 | 4 5 | mpdan | |- ( N e. RR -> ( N < ( N + 1 ) <-> -. ( N + 1 ) <_ N ) ) |
| 7 | 3 6 | mpbid | |- ( N e. RR -> -. ( N + 1 ) <_ N ) |
| 8 | 2 7 | syl | |- ( N e. ( ZZ>= ` M ) -> -. ( N + 1 ) <_ N ) |
| 9 | elfzle2 | |- ( ( N + 1 ) e. ( M ... N ) -> ( N + 1 ) <_ N ) |
|
| 10 | 8 9 | nsyl | |- ( N e. ( ZZ>= ` M ) -> -. ( N + 1 ) e. ( M ... N ) ) |
| 11 | 10 | ad2antrr | |- ( ( ( N e. ( ZZ>= ` M ) /\ K e. ZZ ) /\ N e. ( ZZ>= ` K ) ) -> -. ( N + 1 ) e. ( M ... N ) ) |
| 12 | nelneq2 | |- ( ( ( N + 1 ) e. ( ZZ>= ` K ) /\ -. ( N + 1 ) e. ( M ... N ) ) -> -. ( ZZ>= ` K ) = ( M ... N ) ) |
|
| 13 | 1 11 12 | syl2an2 | |- ( ( ( N e. ( ZZ>= ` M ) /\ K e. ZZ ) /\ N e. ( ZZ>= ` K ) ) -> -. ( ZZ>= ` K ) = ( M ... N ) ) |
| 14 | eqcom | |- ( ( ZZ>= ` K ) = ( M ... N ) <-> ( M ... N ) = ( ZZ>= ` K ) ) |
|
| 15 | 13 14 | sylnib | |- ( ( ( N e. ( ZZ>= ` M ) /\ K e. ZZ ) /\ N e. ( ZZ>= ` K ) ) -> -. ( M ... N ) = ( ZZ>= ` K ) ) |
| 16 | eluzfz2 | |- ( N e. ( ZZ>= ` M ) -> N e. ( M ... N ) ) |
|
| 17 | 16 | ad2antrr | |- ( ( ( N e. ( ZZ>= ` M ) /\ K e. ZZ ) /\ -. N e. ( ZZ>= ` K ) ) -> N e. ( M ... N ) ) |
| 18 | nelneq2 | |- ( ( N e. ( M ... N ) /\ -. N e. ( ZZ>= ` K ) ) -> -. ( M ... N ) = ( ZZ>= ` K ) ) |
|
| 19 | 17 18 | sylancom | |- ( ( ( N e. ( ZZ>= ` M ) /\ K e. ZZ ) /\ -. N e. ( ZZ>= ` K ) ) -> -. ( M ... N ) = ( ZZ>= ` K ) ) |
| 20 | 15 19 | pm2.61dan | |- ( ( N e. ( ZZ>= ` M ) /\ K e. ZZ ) -> -. ( M ... N ) = ( ZZ>= ` K ) ) |