This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finite interval of integers with three elements. (Contributed by NM, 13-Sep-2011) (Revised by Mario Carneiro, 7-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fztp | |- ( M e. ZZ -> ( M ... ( M + 2 ) ) = { M , ( M + 1 ) , ( M + 2 ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uzid | |- ( M e. ZZ -> M e. ( ZZ>= ` M ) ) |
|
| 2 | peano2uz | |- ( M e. ( ZZ>= ` M ) -> ( M + 1 ) e. ( ZZ>= ` M ) ) |
|
| 3 | fzsuc | |- ( ( M + 1 ) e. ( ZZ>= ` M ) -> ( M ... ( ( M + 1 ) + 1 ) ) = ( ( M ... ( M + 1 ) ) u. { ( ( M + 1 ) + 1 ) } ) ) |
|
| 4 | 1 2 3 | 3syl | |- ( M e. ZZ -> ( M ... ( ( M + 1 ) + 1 ) ) = ( ( M ... ( M + 1 ) ) u. { ( ( M + 1 ) + 1 ) } ) ) |
| 5 | zcn | |- ( M e. ZZ -> M e. CC ) |
|
| 6 | ax-1cn | |- 1 e. CC |
|
| 7 | addass | |- ( ( M e. CC /\ 1 e. CC /\ 1 e. CC ) -> ( ( M + 1 ) + 1 ) = ( M + ( 1 + 1 ) ) ) |
|
| 8 | 6 6 7 | mp3an23 | |- ( M e. CC -> ( ( M + 1 ) + 1 ) = ( M + ( 1 + 1 ) ) ) |
| 9 | 5 8 | syl | |- ( M e. ZZ -> ( ( M + 1 ) + 1 ) = ( M + ( 1 + 1 ) ) ) |
| 10 | df-2 | |- 2 = ( 1 + 1 ) |
|
| 11 | 10 | oveq2i | |- ( M + 2 ) = ( M + ( 1 + 1 ) ) |
| 12 | 9 11 | eqtr4di | |- ( M e. ZZ -> ( ( M + 1 ) + 1 ) = ( M + 2 ) ) |
| 13 | 12 | oveq2d | |- ( M e. ZZ -> ( M ... ( ( M + 1 ) + 1 ) ) = ( M ... ( M + 2 ) ) ) |
| 14 | fzpr | |- ( M e. ZZ -> ( M ... ( M + 1 ) ) = { M , ( M + 1 ) } ) |
|
| 15 | 12 | sneqd | |- ( M e. ZZ -> { ( ( M + 1 ) + 1 ) } = { ( M + 2 ) } ) |
| 16 | 14 15 | uneq12d | |- ( M e. ZZ -> ( ( M ... ( M + 1 ) ) u. { ( ( M + 1 ) + 1 ) } ) = ( { M , ( M + 1 ) } u. { ( M + 2 ) } ) ) |
| 17 | df-tp | |- { M , ( M + 1 ) , ( M + 2 ) } = ( { M , ( M + 1 ) } u. { ( M + 2 ) } ) |
|
| 18 | 16 17 | eqtr4di | |- ( M e. ZZ -> ( ( M ... ( M + 1 ) ) u. { ( ( M + 1 ) + 1 ) } ) = { M , ( M + 1 ) , ( M + 2 ) } ) |
| 19 | 4 13 18 | 3eqtr3d | |- ( M e. ZZ -> ( M ... ( M + 2 ) ) = { M , ( M + 1 ) , ( M + 2 ) } ) |