This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The greatest common divisor of two values of the prime selection function for different arguments is 1. (Contributed by AV, 19-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fvprmselelfz.f | |- F = ( m e. NN |-> if ( m e. Prime , m , 1 ) ) |
|
| Assertion | fvprmselgcd1 | |- ( ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) -> ( ( F ` X ) gcd ( F ` Y ) ) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvprmselelfz.f | |- F = ( m e. NN |-> if ( m e. Prime , m , 1 ) ) |
|
| 2 | eleq1 | |- ( m = X -> ( m e. Prime <-> X e. Prime ) ) |
|
| 3 | id | |- ( m = X -> m = X ) |
|
| 4 | 2 3 | ifbieq1d | |- ( m = X -> if ( m e. Prime , m , 1 ) = if ( X e. Prime , X , 1 ) ) |
| 5 | iftrue | |- ( X e. Prime -> if ( X e. Prime , X , 1 ) = X ) |
|
| 6 | 5 | ad2antrr | |- ( ( ( X e. Prime /\ Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> if ( X e. Prime , X , 1 ) = X ) |
| 7 | 4 6 | sylan9eqr | |- ( ( ( ( X e. Prime /\ Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) /\ m = X ) -> if ( m e. Prime , m , 1 ) = X ) |
| 8 | elfznn | |- ( X e. ( 1 ... N ) -> X e. NN ) |
|
| 9 | 8 | 3ad2ant1 | |- ( ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) -> X e. NN ) |
| 10 | 9 | adantl | |- ( ( ( X e. Prime /\ Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> X e. NN ) |
| 11 | 1 7 10 10 | fvmptd2 | |- ( ( ( X e. Prime /\ Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> ( F ` X ) = X ) |
| 12 | eleq1 | |- ( m = Y -> ( m e. Prime <-> Y e. Prime ) ) |
|
| 13 | id | |- ( m = Y -> m = Y ) |
|
| 14 | 12 13 | ifbieq1d | |- ( m = Y -> if ( m e. Prime , m , 1 ) = if ( Y e. Prime , Y , 1 ) ) |
| 15 | iftrue | |- ( Y e. Prime -> if ( Y e. Prime , Y , 1 ) = Y ) |
|
| 16 | 15 | ad2antlr | |- ( ( ( X e. Prime /\ Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> if ( Y e. Prime , Y , 1 ) = Y ) |
| 17 | 14 16 | sylan9eqr | |- ( ( ( ( X e. Prime /\ Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) /\ m = Y ) -> if ( m e. Prime , m , 1 ) = Y ) |
| 18 | elfznn | |- ( Y e. ( 1 ... N ) -> Y e. NN ) |
|
| 19 | 18 | 3ad2ant2 | |- ( ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) -> Y e. NN ) |
| 20 | 19 | adantl | |- ( ( ( X e. Prime /\ Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> Y e. NN ) |
| 21 | 1 17 20 20 | fvmptd2 | |- ( ( ( X e. Prime /\ Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> ( F ` Y ) = Y ) |
| 22 | 11 21 | oveq12d | |- ( ( ( X e. Prime /\ Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> ( ( F ` X ) gcd ( F ` Y ) ) = ( X gcd Y ) ) |
| 23 | prmrp | |- ( ( X e. Prime /\ Y e. Prime ) -> ( ( X gcd Y ) = 1 <-> X =/= Y ) ) |
|
| 24 | 23 | biimprcd | |- ( X =/= Y -> ( ( X e. Prime /\ Y e. Prime ) -> ( X gcd Y ) = 1 ) ) |
| 25 | 24 | 3ad2ant3 | |- ( ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) -> ( ( X e. Prime /\ Y e. Prime ) -> ( X gcd Y ) = 1 ) ) |
| 26 | 25 | impcom | |- ( ( ( X e. Prime /\ Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> ( X gcd Y ) = 1 ) |
| 27 | 22 26 | eqtrd | |- ( ( ( X e. Prime /\ Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> ( ( F ` X ) gcd ( F ` Y ) ) = 1 ) |
| 28 | 27 | ex | |- ( ( X e. Prime /\ Y e. Prime ) -> ( ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) -> ( ( F ` X ) gcd ( F ` Y ) ) = 1 ) ) |
| 29 | 5 | ad2antrr | |- ( ( ( X e. Prime /\ -. Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> if ( X e. Prime , X , 1 ) = X ) |
| 30 | 4 29 | sylan9eqr | |- ( ( ( ( X e. Prime /\ -. Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) /\ m = X ) -> if ( m e. Prime , m , 1 ) = X ) |
| 31 | 9 | adantl | |- ( ( ( X e. Prime /\ -. Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> X e. NN ) |
| 32 | 1 30 31 31 | fvmptd2 | |- ( ( ( X e. Prime /\ -. Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> ( F ` X ) = X ) |
| 33 | iffalse | |- ( -. Y e. Prime -> if ( Y e. Prime , Y , 1 ) = 1 ) |
|
| 34 | 33 | ad2antlr | |- ( ( ( X e. Prime /\ -. Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> if ( Y e. Prime , Y , 1 ) = 1 ) |
| 35 | 14 34 | sylan9eqr | |- ( ( ( ( X e. Prime /\ -. Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) /\ m = Y ) -> if ( m e. Prime , m , 1 ) = 1 ) |
| 36 | 19 | adantl | |- ( ( ( X e. Prime /\ -. Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> Y e. NN ) |
| 37 | 1nn | |- 1 e. NN |
|
| 38 | 37 | a1i | |- ( ( ( X e. Prime /\ -. Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> 1 e. NN ) |
| 39 | 1 35 36 38 | fvmptd2 | |- ( ( ( X e. Prime /\ -. Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> ( F ` Y ) = 1 ) |
| 40 | 32 39 | oveq12d | |- ( ( ( X e. Prime /\ -. Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> ( ( F ` X ) gcd ( F ` Y ) ) = ( X gcd 1 ) ) |
| 41 | prmz | |- ( X e. Prime -> X e. ZZ ) |
|
| 42 | gcd1 | |- ( X e. ZZ -> ( X gcd 1 ) = 1 ) |
|
| 43 | 41 42 | syl | |- ( X e. Prime -> ( X gcd 1 ) = 1 ) |
| 44 | 43 | ad2antrr | |- ( ( ( X e. Prime /\ -. Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> ( X gcd 1 ) = 1 ) |
| 45 | 40 44 | eqtrd | |- ( ( ( X e. Prime /\ -. Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> ( ( F ` X ) gcd ( F ` Y ) ) = 1 ) |
| 46 | 45 | ex | |- ( ( X e. Prime /\ -. Y e. Prime ) -> ( ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) -> ( ( F ` X ) gcd ( F ` Y ) ) = 1 ) ) |
| 47 | iffalse | |- ( -. X e. Prime -> if ( X e. Prime , X , 1 ) = 1 ) |
|
| 48 | 47 | ad2antrr | |- ( ( ( -. X e. Prime /\ Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> if ( X e. Prime , X , 1 ) = 1 ) |
| 49 | 4 48 | sylan9eqr | |- ( ( ( ( -. X e. Prime /\ Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) /\ m = X ) -> if ( m e. Prime , m , 1 ) = 1 ) |
| 50 | 9 | adantl | |- ( ( ( -. X e. Prime /\ Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> X e. NN ) |
| 51 | 37 | a1i | |- ( ( ( -. X e. Prime /\ Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> 1 e. NN ) |
| 52 | 1 49 50 51 | fvmptd2 | |- ( ( ( -. X e. Prime /\ Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> ( F ` X ) = 1 ) |
| 53 | 15 | ad2antlr | |- ( ( ( -. X e. Prime /\ Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> if ( Y e. Prime , Y , 1 ) = Y ) |
| 54 | 14 53 | sylan9eqr | |- ( ( ( ( -. X e. Prime /\ Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) /\ m = Y ) -> if ( m e. Prime , m , 1 ) = Y ) |
| 55 | 19 | adantl | |- ( ( ( -. X e. Prime /\ Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> Y e. NN ) |
| 56 | 1 54 55 55 | fvmptd2 | |- ( ( ( -. X e. Prime /\ Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> ( F ` Y ) = Y ) |
| 57 | 52 56 | oveq12d | |- ( ( ( -. X e. Prime /\ Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> ( ( F ` X ) gcd ( F ` Y ) ) = ( 1 gcd Y ) ) |
| 58 | prmz | |- ( Y e. Prime -> Y e. ZZ ) |
|
| 59 | 1gcd | |- ( Y e. ZZ -> ( 1 gcd Y ) = 1 ) |
|
| 60 | 58 59 | syl | |- ( Y e. Prime -> ( 1 gcd Y ) = 1 ) |
| 61 | 60 | ad2antlr | |- ( ( ( -. X e. Prime /\ Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> ( 1 gcd Y ) = 1 ) |
| 62 | 57 61 | eqtrd | |- ( ( ( -. X e. Prime /\ Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> ( ( F ` X ) gcd ( F ` Y ) ) = 1 ) |
| 63 | 62 | ex | |- ( ( -. X e. Prime /\ Y e. Prime ) -> ( ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) -> ( ( F ` X ) gcd ( F ` Y ) ) = 1 ) ) |
| 64 | 47 | ad2antrr | |- ( ( ( -. X e. Prime /\ -. Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> if ( X e. Prime , X , 1 ) = 1 ) |
| 65 | 4 64 | sylan9eqr | |- ( ( ( ( -. X e. Prime /\ -. Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) /\ m = X ) -> if ( m e. Prime , m , 1 ) = 1 ) |
| 66 | 9 | adantl | |- ( ( ( -. X e. Prime /\ -. Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> X e. NN ) |
| 67 | 37 | a1i | |- ( ( ( -. X e. Prime /\ -. Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> 1 e. NN ) |
| 68 | 1 65 66 67 | fvmptd2 | |- ( ( ( -. X e. Prime /\ -. Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> ( F ` X ) = 1 ) |
| 69 | 33 | ad2antlr | |- ( ( ( -. X e. Prime /\ -. Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> if ( Y e. Prime , Y , 1 ) = 1 ) |
| 70 | 14 69 | sylan9eqr | |- ( ( ( ( -. X e. Prime /\ -. Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) /\ m = Y ) -> if ( m e. Prime , m , 1 ) = 1 ) |
| 71 | 19 | adantl | |- ( ( ( -. X e. Prime /\ -. Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> Y e. NN ) |
| 72 | 1 70 71 67 | fvmptd2 | |- ( ( ( -. X e. Prime /\ -. Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> ( F ` Y ) = 1 ) |
| 73 | 68 72 | oveq12d | |- ( ( ( -. X e. Prime /\ -. Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> ( ( F ` X ) gcd ( F ` Y ) ) = ( 1 gcd 1 ) ) |
| 74 | 1z | |- 1 e. ZZ |
|
| 75 | 1gcd | |- ( 1 e. ZZ -> ( 1 gcd 1 ) = 1 ) |
|
| 76 | 74 75 | mp1i | |- ( ( ( -. X e. Prime /\ -. Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> ( 1 gcd 1 ) = 1 ) |
| 77 | 73 76 | eqtrd | |- ( ( ( -. X e. Prime /\ -. Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> ( ( F ` X ) gcd ( F ` Y ) ) = 1 ) |
| 78 | 77 | ex | |- ( ( -. X e. Prime /\ -. Y e. Prime ) -> ( ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) -> ( ( F ` X ) gcd ( F ` Y ) ) = 1 ) ) |
| 79 | 28 46 63 78 | 4cases | |- ( ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) -> ( ( F ` X ) gcd ( F ` Y ) ) = 1 ) |