This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The primorial of a positive integer is less than or equal to the factorial of the integer. (Contributed by AV, 15-Aug-2020) (Revised by AV, 29-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prmolefac | |- ( N e. NN0 -> ( #p ` N ) <_ ( ! ` N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv | |- F/ k N e. NN0 |
|
| 2 | fzfid | |- ( N e. NN0 -> ( 1 ... N ) e. Fin ) |
|
| 3 | elfznn | |- ( k e. ( 1 ... N ) -> k e. NN ) |
|
| 4 | 3 | adantl | |- ( ( N e. NN0 /\ k e. ( 1 ... N ) ) -> k e. NN ) |
| 5 | 1nn | |- 1 e. NN |
|
| 6 | 5 | a1i | |- ( ( N e. NN0 /\ k e. ( 1 ... N ) ) -> 1 e. NN ) |
| 7 | 4 6 | ifcld | |- ( ( N e. NN0 /\ k e. ( 1 ... N ) ) -> if ( k e. Prime , k , 1 ) e. NN ) |
| 8 | 7 | nnred | |- ( ( N e. NN0 /\ k e. ( 1 ... N ) ) -> if ( k e. Prime , k , 1 ) e. RR ) |
| 9 | ifeqor | |- ( if ( k e. Prime , k , 1 ) = k \/ if ( k e. Prime , k , 1 ) = 1 ) |
|
| 10 | nnnn0 | |- ( k e. NN -> k e. NN0 ) |
|
| 11 | 10 | nn0ge0d | |- ( k e. NN -> 0 <_ k ) |
| 12 | 3 11 | syl | |- ( k e. ( 1 ... N ) -> 0 <_ k ) |
| 13 | 12 | adantl | |- ( ( N e. NN0 /\ k e. ( 1 ... N ) ) -> 0 <_ k ) |
| 14 | breq2 | |- ( if ( k e. Prime , k , 1 ) = k -> ( 0 <_ if ( k e. Prime , k , 1 ) <-> 0 <_ k ) ) |
|
| 15 | 13 14 | imbitrrid | |- ( if ( k e. Prime , k , 1 ) = k -> ( ( N e. NN0 /\ k e. ( 1 ... N ) ) -> 0 <_ if ( k e. Prime , k , 1 ) ) ) |
| 16 | 0le1 | |- 0 <_ 1 |
|
| 17 | breq2 | |- ( if ( k e. Prime , k , 1 ) = 1 -> ( 0 <_ if ( k e. Prime , k , 1 ) <-> 0 <_ 1 ) ) |
|
| 18 | 17 | adantr | |- ( ( if ( k e. Prime , k , 1 ) = 1 /\ ( N e. NN0 /\ k e. ( 1 ... N ) ) ) -> ( 0 <_ if ( k e. Prime , k , 1 ) <-> 0 <_ 1 ) ) |
| 19 | 16 18 | mpbiri | |- ( ( if ( k e. Prime , k , 1 ) = 1 /\ ( N e. NN0 /\ k e. ( 1 ... N ) ) ) -> 0 <_ if ( k e. Prime , k , 1 ) ) |
| 20 | 19 | ex | |- ( if ( k e. Prime , k , 1 ) = 1 -> ( ( N e. NN0 /\ k e. ( 1 ... N ) ) -> 0 <_ if ( k e. Prime , k , 1 ) ) ) |
| 21 | 15 20 | jaoi | |- ( ( if ( k e. Prime , k , 1 ) = k \/ if ( k e. Prime , k , 1 ) = 1 ) -> ( ( N e. NN0 /\ k e. ( 1 ... N ) ) -> 0 <_ if ( k e. Prime , k , 1 ) ) ) |
| 22 | 9 21 | ax-mp | |- ( ( N e. NN0 /\ k e. ( 1 ... N ) ) -> 0 <_ if ( k e. Prime , k , 1 ) ) |
| 23 | 4 | nnred | |- ( ( N e. NN0 /\ k e. ( 1 ... N ) ) -> k e. RR ) |
| 24 | 23 | leidd | |- ( ( N e. NN0 /\ k e. ( 1 ... N ) ) -> k <_ k ) |
| 25 | breq1 | |- ( if ( k e. Prime , k , 1 ) = k -> ( if ( k e. Prime , k , 1 ) <_ k <-> k <_ k ) ) |
|
| 26 | 24 25 | imbitrrid | |- ( if ( k e. Prime , k , 1 ) = k -> ( ( N e. NN0 /\ k e. ( 1 ... N ) ) -> if ( k e. Prime , k , 1 ) <_ k ) ) |
| 27 | 4 | nnge1d | |- ( ( N e. NN0 /\ k e. ( 1 ... N ) ) -> 1 <_ k ) |
| 28 | breq1 | |- ( if ( k e. Prime , k , 1 ) = 1 -> ( if ( k e. Prime , k , 1 ) <_ k <-> 1 <_ k ) ) |
|
| 29 | 27 28 | imbitrrid | |- ( if ( k e. Prime , k , 1 ) = 1 -> ( ( N e. NN0 /\ k e. ( 1 ... N ) ) -> if ( k e. Prime , k , 1 ) <_ k ) ) |
| 30 | 26 29 | jaoi | |- ( ( if ( k e. Prime , k , 1 ) = k \/ if ( k e. Prime , k , 1 ) = 1 ) -> ( ( N e. NN0 /\ k e. ( 1 ... N ) ) -> if ( k e. Prime , k , 1 ) <_ k ) ) |
| 31 | 9 30 | ax-mp | |- ( ( N e. NN0 /\ k e. ( 1 ... N ) ) -> if ( k e. Prime , k , 1 ) <_ k ) |
| 32 | 1 2 8 22 23 31 | fprodle | |- ( N e. NN0 -> prod_ k e. ( 1 ... N ) if ( k e. Prime , k , 1 ) <_ prod_ k e. ( 1 ... N ) k ) |
| 33 | prmoval | |- ( N e. NN0 -> ( #p ` N ) = prod_ k e. ( 1 ... N ) if ( k e. Prime , k , 1 ) ) |
|
| 34 | fprodfac | |- ( N e. NN0 -> ( ! ` N ) = prod_ k e. ( 1 ... N ) k ) |
|
| 35 | 32 33 34 | 3brtr4d | |- ( N e. NN0 -> ( #p ` N ) <_ ( ! ` N ) ) |