This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The greatest common divisor of two values of the prime selection function for different arguments is 1. (Contributed by AV, 19-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fvprmselelfz.f | ⊢ 𝐹 = ( 𝑚 ∈ ℕ ↦ if ( 𝑚 ∈ ℙ , 𝑚 , 1 ) ) | |
| Assertion | fvprmselgcd1 | ⊢ ( ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) → ( ( 𝐹 ‘ 𝑋 ) gcd ( 𝐹 ‘ 𝑌 ) ) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvprmselelfz.f | ⊢ 𝐹 = ( 𝑚 ∈ ℕ ↦ if ( 𝑚 ∈ ℙ , 𝑚 , 1 ) ) | |
| 2 | eleq1 | ⊢ ( 𝑚 = 𝑋 → ( 𝑚 ∈ ℙ ↔ 𝑋 ∈ ℙ ) ) | |
| 3 | id | ⊢ ( 𝑚 = 𝑋 → 𝑚 = 𝑋 ) | |
| 4 | 2 3 | ifbieq1d | ⊢ ( 𝑚 = 𝑋 → if ( 𝑚 ∈ ℙ , 𝑚 , 1 ) = if ( 𝑋 ∈ ℙ , 𝑋 , 1 ) ) |
| 5 | iftrue | ⊢ ( 𝑋 ∈ ℙ → if ( 𝑋 ∈ ℙ , 𝑋 , 1 ) = 𝑋 ) | |
| 6 | 5 | ad2antrr | ⊢ ( ( ( 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → if ( 𝑋 ∈ ℙ , 𝑋 , 1 ) = 𝑋 ) |
| 7 | 4 6 | sylan9eqr | ⊢ ( ( ( ( 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) ∧ 𝑚 = 𝑋 ) → if ( 𝑚 ∈ ℙ , 𝑚 , 1 ) = 𝑋 ) |
| 8 | elfznn | ⊢ ( 𝑋 ∈ ( 1 ... 𝑁 ) → 𝑋 ∈ ℕ ) | |
| 9 | 8 | 3ad2ant1 | ⊢ ( ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) → 𝑋 ∈ ℕ ) |
| 10 | 9 | adantl | ⊢ ( ( ( 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → 𝑋 ∈ ℕ ) |
| 11 | 1 7 10 10 | fvmptd2 | ⊢ ( ( ( 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → ( 𝐹 ‘ 𝑋 ) = 𝑋 ) |
| 12 | eleq1 | ⊢ ( 𝑚 = 𝑌 → ( 𝑚 ∈ ℙ ↔ 𝑌 ∈ ℙ ) ) | |
| 13 | id | ⊢ ( 𝑚 = 𝑌 → 𝑚 = 𝑌 ) | |
| 14 | 12 13 | ifbieq1d | ⊢ ( 𝑚 = 𝑌 → if ( 𝑚 ∈ ℙ , 𝑚 , 1 ) = if ( 𝑌 ∈ ℙ , 𝑌 , 1 ) ) |
| 15 | iftrue | ⊢ ( 𝑌 ∈ ℙ → if ( 𝑌 ∈ ℙ , 𝑌 , 1 ) = 𝑌 ) | |
| 16 | 15 | ad2antlr | ⊢ ( ( ( 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → if ( 𝑌 ∈ ℙ , 𝑌 , 1 ) = 𝑌 ) |
| 17 | 14 16 | sylan9eqr | ⊢ ( ( ( ( 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) ∧ 𝑚 = 𝑌 ) → if ( 𝑚 ∈ ℙ , 𝑚 , 1 ) = 𝑌 ) |
| 18 | elfznn | ⊢ ( 𝑌 ∈ ( 1 ... 𝑁 ) → 𝑌 ∈ ℕ ) | |
| 19 | 18 | 3ad2ant2 | ⊢ ( ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) → 𝑌 ∈ ℕ ) |
| 20 | 19 | adantl | ⊢ ( ( ( 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → 𝑌 ∈ ℕ ) |
| 21 | 1 17 20 20 | fvmptd2 | ⊢ ( ( ( 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → ( 𝐹 ‘ 𝑌 ) = 𝑌 ) |
| 22 | 11 21 | oveq12d | ⊢ ( ( ( 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → ( ( 𝐹 ‘ 𝑋 ) gcd ( 𝐹 ‘ 𝑌 ) ) = ( 𝑋 gcd 𝑌 ) ) |
| 23 | prmrp | ⊢ ( ( 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ ) → ( ( 𝑋 gcd 𝑌 ) = 1 ↔ 𝑋 ≠ 𝑌 ) ) | |
| 24 | 23 | biimprcd | ⊢ ( 𝑋 ≠ 𝑌 → ( ( 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ ) → ( 𝑋 gcd 𝑌 ) = 1 ) ) |
| 25 | 24 | 3ad2ant3 | ⊢ ( ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) → ( ( 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ ) → ( 𝑋 gcd 𝑌 ) = 1 ) ) |
| 26 | 25 | impcom | ⊢ ( ( ( 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → ( 𝑋 gcd 𝑌 ) = 1 ) |
| 27 | 22 26 | eqtrd | ⊢ ( ( ( 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → ( ( 𝐹 ‘ 𝑋 ) gcd ( 𝐹 ‘ 𝑌 ) ) = 1 ) |
| 28 | 27 | ex | ⊢ ( ( 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ ) → ( ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) → ( ( 𝐹 ‘ 𝑋 ) gcd ( 𝐹 ‘ 𝑌 ) ) = 1 ) ) |
| 29 | 5 | ad2antrr | ⊢ ( ( ( 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → if ( 𝑋 ∈ ℙ , 𝑋 , 1 ) = 𝑋 ) |
| 30 | 4 29 | sylan9eqr | ⊢ ( ( ( ( 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) ∧ 𝑚 = 𝑋 ) → if ( 𝑚 ∈ ℙ , 𝑚 , 1 ) = 𝑋 ) |
| 31 | 9 | adantl | ⊢ ( ( ( 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → 𝑋 ∈ ℕ ) |
| 32 | 1 30 31 31 | fvmptd2 | ⊢ ( ( ( 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → ( 𝐹 ‘ 𝑋 ) = 𝑋 ) |
| 33 | iffalse | ⊢ ( ¬ 𝑌 ∈ ℙ → if ( 𝑌 ∈ ℙ , 𝑌 , 1 ) = 1 ) | |
| 34 | 33 | ad2antlr | ⊢ ( ( ( 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → if ( 𝑌 ∈ ℙ , 𝑌 , 1 ) = 1 ) |
| 35 | 14 34 | sylan9eqr | ⊢ ( ( ( ( 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) ∧ 𝑚 = 𝑌 ) → if ( 𝑚 ∈ ℙ , 𝑚 , 1 ) = 1 ) |
| 36 | 19 | adantl | ⊢ ( ( ( 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → 𝑌 ∈ ℕ ) |
| 37 | 1nn | ⊢ 1 ∈ ℕ | |
| 38 | 37 | a1i | ⊢ ( ( ( 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → 1 ∈ ℕ ) |
| 39 | 1 35 36 38 | fvmptd2 | ⊢ ( ( ( 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → ( 𝐹 ‘ 𝑌 ) = 1 ) |
| 40 | 32 39 | oveq12d | ⊢ ( ( ( 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → ( ( 𝐹 ‘ 𝑋 ) gcd ( 𝐹 ‘ 𝑌 ) ) = ( 𝑋 gcd 1 ) ) |
| 41 | prmz | ⊢ ( 𝑋 ∈ ℙ → 𝑋 ∈ ℤ ) | |
| 42 | gcd1 | ⊢ ( 𝑋 ∈ ℤ → ( 𝑋 gcd 1 ) = 1 ) | |
| 43 | 41 42 | syl | ⊢ ( 𝑋 ∈ ℙ → ( 𝑋 gcd 1 ) = 1 ) |
| 44 | 43 | ad2antrr | ⊢ ( ( ( 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → ( 𝑋 gcd 1 ) = 1 ) |
| 45 | 40 44 | eqtrd | ⊢ ( ( ( 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → ( ( 𝐹 ‘ 𝑋 ) gcd ( 𝐹 ‘ 𝑌 ) ) = 1 ) |
| 46 | 45 | ex | ⊢ ( ( 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ ) → ( ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) → ( ( 𝐹 ‘ 𝑋 ) gcd ( 𝐹 ‘ 𝑌 ) ) = 1 ) ) |
| 47 | iffalse | ⊢ ( ¬ 𝑋 ∈ ℙ → if ( 𝑋 ∈ ℙ , 𝑋 , 1 ) = 1 ) | |
| 48 | 47 | ad2antrr | ⊢ ( ( ( ¬ 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → if ( 𝑋 ∈ ℙ , 𝑋 , 1 ) = 1 ) |
| 49 | 4 48 | sylan9eqr | ⊢ ( ( ( ( ¬ 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) ∧ 𝑚 = 𝑋 ) → if ( 𝑚 ∈ ℙ , 𝑚 , 1 ) = 1 ) |
| 50 | 9 | adantl | ⊢ ( ( ( ¬ 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → 𝑋 ∈ ℕ ) |
| 51 | 37 | a1i | ⊢ ( ( ( ¬ 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → 1 ∈ ℕ ) |
| 52 | 1 49 50 51 | fvmptd2 | ⊢ ( ( ( ¬ 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → ( 𝐹 ‘ 𝑋 ) = 1 ) |
| 53 | 15 | ad2antlr | ⊢ ( ( ( ¬ 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → if ( 𝑌 ∈ ℙ , 𝑌 , 1 ) = 𝑌 ) |
| 54 | 14 53 | sylan9eqr | ⊢ ( ( ( ( ¬ 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) ∧ 𝑚 = 𝑌 ) → if ( 𝑚 ∈ ℙ , 𝑚 , 1 ) = 𝑌 ) |
| 55 | 19 | adantl | ⊢ ( ( ( ¬ 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → 𝑌 ∈ ℕ ) |
| 56 | 1 54 55 55 | fvmptd2 | ⊢ ( ( ( ¬ 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → ( 𝐹 ‘ 𝑌 ) = 𝑌 ) |
| 57 | 52 56 | oveq12d | ⊢ ( ( ( ¬ 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → ( ( 𝐹 ‘ 𝑋 ) gcd ( 𝐹 ‘ 𝑌 ) ) = ( 1 gcd 𝑌 ) ) |
| 58 | prmz | ⊢ ( 𝑌 ∈ ℙ → 𝑌 ∈ ℤ ) | |
| 59 | 1gcd | ⊢ ( 𝑌 ∈ ℤ → ( 1 gcd 𝑌 ) = 1 ) | |
| 60 | 58 59 | syl | ⊢ ( 𝑌 ∈ ℙ → ( 1 gcd 𝑌 ) = 1 ) |
| 61 | 60 | ad2antlr | ⊢ ( ( ( ¬ 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → ( 1 gcd 𝑌 ) = 1 ) |
| 62 | 57 61 | eqtrd | ⊢ ( ( ( ¬ 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → ( ( 𝐹 ‘ 𝑋 ) gcd ( 𝐹 ‘ 𝑌 ) ) = 1 ) |
| 63 | 62 | ex | ⊢ ( ( ¬ 𝑋 ∈ ℙ ∧ 𝑌 ∈ ℙ ) → ( ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) → ( ( 𝐹 ‘ 𝑋 ) gcd ( 𝐹 ‘ 𝑌 ) ) = 1 ) ) |
| 64 | 47 | ad2antrr | ⊢ ( ( ( ¬ 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → if ( 𝑋 ∈ ℙ , 𝑋 , 1 ) = 1 ) |
| 65 | 4 64 | sylan9eqr | ⊢ ( ( ( ( ¬ 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) ∧ 𝑚 = 𝑋 ) → if ( 𝑚 ∈ ℙ , 𝑚 , 1 ) = 1 ) |
| 66 | 9 | adantl | ⊢ ( ( ( ¬ 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → 𝑋 ∈ ℕ ) |
| 67 | 37 | a1i | ⊢ ( ( ( ¬ 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → 1 ∈ ℕ ) |
| 68 | 1 65 66 67 | fvmptd2 | ⊢ ( ( ( ¬ 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → ( 𝐹 ‘ 𝑋 ) = 1 ) |
| 69 | 33 | ad2antlr | ⊢ ( ( ( ¬ 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → if ( 𝑌 ∈ ℙ , 𝑌 , 1 ) = 1 ) |
| 70 | 14 69 | sylan9eqr | ⊢ ( ( ( ( ¬ 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) ∧ 𝑚 = 𝑌 ) → if ( 𝑚 ∈ ℙ , 𝑚 , 1 ) = 1 ) |
| 71 | 19 | adantl | ⊢ ( ( ( ¬ 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → 𝑌 ∈ ℕ ) |
| 72 | 1 70 71 67 | fvmptd2 | ⊢ ( ( ( ¬ 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → ( 𝐹 ‘ 𝑌 ) = 1 ) |
| 73 | 68 72 | oveq12d | ⊢ ( ( ( ¬ 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → ( ( 𝐹 ‘ 𝑋 ) gcd ( 𝐹 ‘ 𝑌 ) ) = ( 1 gcd 1 ) ) |
| 74 | 1z | ⊢ 1 ∈ ℤ | |
| 75 | 1gcd | ⊢ ( 1 ∈ ℤ → ( 1 gcd 1 ) = 1 ) | |
| 76 | 74 75 | mp1i | ⊢ ( ( ( ¬ 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → ( 1 gcd 1 ) = 1 ) |
| 77 | 73 76 | eqtrd | ⊢ ( ( ( ¬ 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ ) ∧ ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) ) → ( ( 𝐹 ‘ 𝑋 ) gcd ( 𝐹 ‘ 𝑌 ) ) = 1 ) |
| 78 | 77 | ex | ⊢ ( ( ¬ 𝑋 ∈ ℙ ∧ ¬ 𝑌 ∈ ℙ ) → ( ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) → ( ( 𝐹 ‘ 𝑋 ) gcd ( 𝐹 ‘ 𝑌 ) ) = 1 ) ) |
| 79 | 28 46 63 78 | 4cases | ⊢ ( ( 𝑋 ∈ ( 1 ... 𝑁 ) ∧ 𝑌 ∈ ( 1 ... 𝑁 ) ∧ 𝑋 ≠ 𝑌 ) → ( ( 𝐹 ‘ 𝑋 ) gcd ( 𝐹 ‘ 𝑌 ) ) = 1 ) |