This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A singleton containing an ordered pair is a finitely supported function. (Contributed by AV, 19-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | snopfsupp | |- ( ( X e. V /\ Y e. W /\ Z e. U ) -> { <. X , Y >. } finSupp Z ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snfi | |- { X } e. Fin |
|
| 2 | snopsuppss | |- ( { <. X , Y >. } supp Z ) C_ { X } |
|
| 3 | 1 2 | pm3.2i | |- ( { X } e. Fin /\ ( { <. X , Y >. } supp Z ) C_ { X } ) |
| 4 | ssfi | |- ( ( { X } e. Fin /\ ( { <. X , Y >. } supp Z ) C_ { X } ) -> ( { <. X , Y >. } supp Z ) e. Fin ) |
|
| 5 | 3 4 | mp1i | |- ( ( X e. V /\ Y e. W /\ Z e. U ) -> ( { <. X , Y >. } supp Z ) e. Fin ) |
| 6 | funsng | |- ( ( X e. V /\ Y e. W ) -> Fun { <. X , Y >. } ) |
|
| 7 | 6 | 3adant3 | |- ( ( X e. V /\ Y e. W /\ Z e. U ) -> Fun { <. X , Y >. } ) |
| 8 | snex | |- { <. X , Y >. } e. _V |
|
| 9 | 8 | a1i | |- ( ( X e. V /\ Y e. W /\ Z e. U ) -> { <. X , Y >. } e. _V ) |
| 10 | simp3 | |- ( ( X e. V /\ Y e. W /\ Z e. U ) -> Z e. U ) |
|
| 11 | funisfsupp | |- ( ( Fun { <. X , Y >. } /\ { <. X , Y >. } e. _V /\ Z e. U ) -> ( { <. X , Y >. } finSupp Z <-> ( { <. X , Y >. } supp Z ) e. Fin ) ) |
|
| 12 | 7 9 10 11 | syl3anc | |- ( ( X e. V /\ Y e. W /\ Z e. U ) -> ( { <. X , Y >. } finSupp Z <-> ( { <. X , Y >. } supp Z ) e. Fin ) ) |
| 13 | 5 12 | mpbird | |- ( ( X e. V /\ Y e. W /\ Z e. U ) -> { <. X , Y >. } finSupp Z ) |