This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restricting a function to a domain without one element of the domain of the function, and adding a pair of this element and the function value of the element results in the function itself. (Contributed by AV, 2-Dec-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | funresdfunsn | |- ( ( Fun F /\ X e. dom F ) -> ( ( F |` ( _V \ { X } ) ) u. { <. X , ( F ` X ) >. } ) = F ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funrel | |- ( Fun F -> Rel F ) |
|
| 2 | resdmdfsn | |- ( Rel F -> ( F |` ( _V \ { X } ) ) = ( F |` ( dom F \ { X } ) ) ) |
|
| 3 | 1 2 | syl | |- ( Fun F -> ( F |` ( _V \ { X } ) ) = ( F |` ( dom F \ { X } ) ) ) |
| 4 | 3 | adantr | |- ( ( Fun F /\ X e. dom F ) -> ( F |` ( _V \ { X } ) ) = ( F |` ( dom F \ { X } ) ) ) |
| 5 | 4 | uneq1d | |- ( ( Fun F /\ X e. dom F ) -> ( ( F |` ( _V \ { X } ) ) u. { <. X , ( F ` X ) >. } ) = ( ( F |` ( dom F \ { X } ) ) u. { <. X , ( F ` X ) >. } ) ) |
| 6 | funfn | |- ( Fun F <-> F Fn dom F ) |
|
| 7 | fnsnsplit | |- ( ( F Fn dom F /\ X e. dom F ) -> F = ( ( F |` ( dom F \ { X } ) ) u. { <. X , ( F ` X ) >. } ) ) |
|
| 8 | 6 7 | sylanb | |- ( ( Fun F /\ X e. dom F ) -> F = ( ( F |` ( dom F \ { X } ) ) u. { <. X , ( F ` X ) >. } ) ) |
| 9 | 5 8 | eqtr4d | |- ( ( Fun F /\ X e. dom F ) -> ( ( F |` ( _V \ { X } ) ) u. { <. X , ( F ` X ) >. } ) = F ) |