This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restricting a function to a domain without one element of the domain of the function, and adding a pair of this element and the function value of the element results in the function itself. (Contributed by AV, 2-Dec-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | funresdfunsn | ⊢ ( ( Fun 𝐹 ∧ 𝑋 ∈ dom 𝐹 ) → ( ( 𝐹 ↾ ( V ∖ { 𝑋 } ) ) ∪ { 〈 𝑋 , ( 𝐹 ‘ 𝑋 ) 〉 } ) = 𝐹 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funrel | ⊢ ( Fun 𝐹 → Rel 𝐹 ) | |
| 2 | resdmdfsn | ⊢ ( Rel 𝐹 → ( 𝐹 ↾ ( V ∖ { 𝑋 } ) ) = ( 𝐹 ↾ ( dom 𝐹 ∖ { 𝑋 } ) ) ) | |
| 3 | 1 2 | syl | ⊢ ( Fun 𝐹 → ( 𝐹 ↾ ( V ∖ { 𝑋 } ) ) = ( 𝐹 ↾ ( dom 𝐹 ∖ { 𝑋 } ) ) ) |
| 4 | 3 | adantr | ⊢ ( ( Fun 𝐹 ∧ 𝑋 ∈ dom 𝐹 ) → ( 𝐹 ↾ ( V ∖ { 𝑋 } ) ) = ( 𝐹 ↾ ( dom 𝐹 ∖ { 𝑋 } ) ) ) |
| 5 | 4 | uneq1d | ⊢ ( ( Fun 𝐹 ∧ 𝑋 ∈ dom 𝐹 ) → ( ( 𝐹 ↾ ( V ∖ { 𝑋 } ) ) ∪ { 〈 𝑋 , ( 𝐹 ‘ 𝑋 ) 〉 } ) = ( ( 𝐹 ↾ ( dom 𝐹 ∖ { 𝑋 } ) ) ∪ { 〈 𝑋 , ( 𝐹 ‘ 𝑋 ) 〉 } ) ) |
| 6 | funfn | ⊢ ( Fun 𝐹 ↔ 𝐹 Fn dom 𝐹 ) | |
| 7 | fnsnsplit | ⊢ ( ( 𝐹 Fn dom 𝐹 ∧ 𝑋 ∈ dom 𝐹 ) → 𝐹 = ( ( 𝐹 ↾ ( dom 𝐹 ∖ { 𝑋 } ) ) ∪ { 〈 𝑋 , ( 𝐹 ‘ 𝑋 ) 〉 } ) ) | |
| 8 | 6 7 | sylanb | ⊢ ( ( Fun 𝐹 ∧ 𝑋 ∈ dom 𝐹 ) → 𝐹 = ( ( 𝐹 ↾ ( dom 𝐹 ∖ { 𝑋 } ) ) ∪ { 〈 𝑋 , ( 𝐹 ‘ 𝑋 ) 〉 } ) ) |
| 9 | 5 8 | eqtr4d | ⊢ ( ( Fun 𝐹 ∧ 𝑋 ∈ dom 𝐹 ) → ( ( 𝐹 ↾ ( V ∖ { 𝑋 } ) ) ∪ { 〈 𝑋 , ( 𝐹 ‘ 𝑋 ) 〉 } ) = 𝐹 ) |