This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restricting a relation to its domain without a set is the same as restricting the relation to the universe without this set. (Contributed by AV, 2-Dec-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | resdmdfsn | |- ( Rel R -> ( R |` ( _V \ { X } ) ) = ( R |` ( dom R \ { X } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resindm | |- ( Rel R -> ( R |` ( ( _V \ { X } ) i^i dom R ) ) = ( R |` ( _V \ { X } ) ) ) |
|
| 2 | indif1 | |- ( ( _V \ { X } ) i^i dom R ) = ( ( _V i^i dom R ) \ { X } ) |
|
| 3 | incom | |- ( _V i^i dom R ) = ( dom R i^i _V ) |
|
| 4 | inv1 | |- ( dom R i^i _V ) = dom R |
|
| 5 | 3 4 | eqtri | |- ( _V i^i dom R ) = dom R |
| 6 | 5 | difeq1i | |- ( ( _V i^i dom R ) \ { X } ) = ( dom R \ { X } ) |
| 7 | 2 6 | eqtri | |- ( ( _V \ { X } ) i^i dom R ) = ( dom R \ { X } ) |
| 8 | 7 | reseq2i | |- ( R |` ( ( _V \ { X } ) i^i dom R ) ) = ( R |` ( dom R \ { X } ) ) |
| 9 | 1 8 | eqtr3di | |- ( Rel R -> ( R |` ( _V \ { X } ) ) = ( R |` ( dom R \ { X } ) ) ) |