This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Split a function into a single point and all the rest. (Contributed by Stefan O'Rear, 27-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fnsnsplit | |- ( ( F Fn A /\ X e. A ) -> F = ( ( F |` ( A \ { X } ) ) u. { <. X , ( F ` X ) >. } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnresdm | |- ( F Fn A -> ( F |` A ) = F ) |
|
| 2 | 1 | adantr | |- ( ( F Fn A /\ X e. A ) -> ( F |` A ) = F ) |
| 3 | resundi | |- ( F |` ( ( A \ { X } ) u. { X } ) ) = ( ( F |` ( A \ { X } ) ) u. ( F |` { X } ) ) |
|
| 4 | difsnid | |- ( X e. A -> ( ( A \ { X } ) u. { X } ) = A ) |
|
| 5 | 4 | adantl | |- ( ( F Fn A /\ X e. A ) -> ( ( A \ { X } ) u. { X } ) = A ) |
| 6 | 5 | reseq2d | |- ( ( F Fn A /\ X e. A ) -> ( F |` ( ( A \ { X } ) u. { X } ) ) = ( F |` A ) ) |
| 7 | fnressn | |- ( ( F Fn A /\ X e. A ) -> ( F |` { X } ) = { <. X , ( F ` X ) >. } ) |
|
| 8 | 7 | uneq2d | |- ( ( F Fn A /\ X e. A ) -> ( ( F |` ( A \ { X } ) ) u. ( F |` { X } ) ) = ( ( F |` ( A \ { X } ) ) u. { <. X , ( F ` X ) >. } ) ) |
| 9 | 3 6 8 | 3eqtr3a | |- ( ( F Fn A /\ X e. A ) -> ( F |` A ) = ( ( F |` ( A \ { X } ) ) u. { <. X , ( F ` X ) >. } ) ) |
| 10 | 2 9 | eqtr3d | |- ( ( F Fn A /\ X e. A ) -> F = ( ( F |` ( A \ { X } ) ) u. { <. X , ( F ` X ) >. } ) ) |