This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in the class of all singletons. (Contributed by Scott Fenton, 19-Feb-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elsingles | |- ( A e. Singletons <-> E. x A = { x } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex | |- ( A e. Singletons -> A e. _V ) |
|
| 2 | vsnex | |- { x } e. _V |
|
| 3 | eleq1 | |- ( A = { x } -> ( A e. _V <-> { x } e. _V ) ) |
|
| 4 | 2 3 | mpbiri | |- ( A = { x } -> A e. _V ) |
| 5 | 4 | exlimiv | |- ( E. x A = { x } -> A e. _V ) |
| 6 | eleq1 | |- ( y = A -> ( y e. Singletons <-> A e. Singletons ) ) |
|
| 7 | eqeq1 | |- ( y = A -> ( y = { x } <-> A = { x } ) ) |
|
| 8 | 7 | exbidv | |- ( y = A -> ( E. x y = { x } <-> E. x A = { x } ) ) |
| 9 | df-singles | |- Singletons = ran Singleton |
|
| 10 | 9 | eleq2i | |- ( y e. Singletons <-> y e. ran Singleton ) |
| 11 | vex | |- y e. _V |
|
| 12 | 11 | elrn | |- ( y e. ran Singleton <-> E. x x Singleton y ) |
| 13 | vex | |- x e. _V |
|
| 14 | 13 11 | brsingle | |- ( x Singleton y <-> y = { x } ) |
| 15 | 14 | exbii | |- ( E. x x Singleton y <-> E. x y = { x } ) |
| 16 | 10 12 15 | 3bitri | |- ( y e. Singletons <-> E. x y = { x } ) |
| 17 | 6 8 16 | vtoclbg | |- ( A e. _V -> ( A e. Singletons <-> E. x A = { x } ) ) |
| 18 | 1 5 17 | pm5.21nii | |- ( A e. Singletons <-> E. x A = { x } ) |