This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity functor for a subcategory is an "inclusion functor" from the subcategory into its supercategory. (Contributed by AV, 29-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | idfusubc.s | |- S = ( C |`cat J ) |
|
| idfusubc.i | |- I = ( idFunc ` S ) |
||
| idfusubc.b | |- B = ( Base ` S ) |
||
| Assertion | idfusubc0 | |- ( J e. ( Subcat ` C ) -> I = <. ( _I |` B ) , ( x e. B , y e. B |-> ( _I |` ( x ( Hom ` S ) y ) ) ) >. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idfusubc.s | |- S = ( C |`cat J ) |
|
| 2 | idfusubc.i | |- I = ( idFunc ` S ) |
|
| 3 | idfusubc.b | |- B = ( Base ` S ) |
|
| 4 | id | |- ( J e. ( Subcat ` C ) -> J e. ( Subcat ` C ) ) |
|
| 5 | 1 4 | subccat | |- ( J e. ( Subcat ` C ) -> S e. Cat ) |
| 6 | eqid | |- ( Hom ` S ) = ( Hom ` S ) |
|
| 7 | 2 3 5 6 | idfuval | |- ( J e. ( Subcat ` C ) -> I = <. ( _I |` B ) , ( z e. ( B X. B ) |-> ( _I |` ( ( Hom ` S ) ` z ) ) ) >. ) |
| 8 | fveq2 | |- ( z = <. x , y >. -> ( ( Hom ` S ) ` z ) = ( ( Hom ` S ) ` <. x , y >. ) ) |
|
| 9 | df-ov | |- ( x ( Hom ` S ) y ) = ( ( Hom ` S ) ` <. x , y >. ) |
|
| 10 | 8 9 | eqtr4di | |- ( z = <. x , y >. -> ( ( Hom ` S ) ` z ) = ( x ( Hom ` S ) y ) ) |
| 11 | 10 | reseq2d | |- ( z = <. x , y >. -> ( _I |` ( ( Hom ` S ) ` z ) ) = ( _I |` ( x ( Hom ` S ) y ) ) ) |
| 12 | 11 | mpompt | |- ( z e. ( B X. B ) |-> ( _I |` ( ( Hom ` S ) ` z ) ) ) = ( x e. B , y e. B |-> ( _I |` ( x ( Hom ` S ) y ) ) ) |
| 13 | 12 | a1i | |- ( J e. ( Subcat ` C ) -> ( z e. ( B X. B ) |-> ( _I |` ( ( Hom ` S ) ` z ) ) ) = ( x e. B , y e. B |-> ( _I |` ( x ( Hom ` S ) y ) ) ) ) |
| 14 | 13 | opeq2d | |- ( J e. ( Subcat ` C ) -> <. ( _I |` B ) , ( z e. ( B X. B ) |-> ( _I |` ( ( Hom ` S ) ` z ) ) ) >. = <. ( _I |` B ) , ( x e. B , y e. B |-> ( _I |` ( x ( Hom ` S ) y ) ) ) >. ) |
| 15 | 7 14 | eqtrd | |- ( J e. ( Subcat ` C ) -> I = <. ( _I |` B ) , ( x e. B , y e. B |-> ( _I |` ( x ( Hom ` S ) y ) ) ) >. ) |