This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The opposite functor of an opposite functor is a functor on the original categories. (Contributed by Zhi Wang, 14-Nov-2025) The functor in opposite categories does not have to be an opposite functor. (Revised by Zhi Wang, 17-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | funcoppc2.o | |- O = ( oppCat ` C ) |
|
| funcoppc2.p | |- P = ( oppCat ` D ) |
||
| funcoppc2.c | |- ( ph -> C e. V ) |
||
| funcoppc2.d | |- ( ph -> D e. W ) |
||
| 2oppffunc.f | |- ( ph -> F e. ( O Func P ) ) |
||
| Assertion | 2oppffunc | |- ( ph -> ( oppFunc ` F ) e. ( C Func D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcoppc2.o | |- O = ( oppCat ` C ) |
|
| 2 | funcoppc2.p | |- P = ( oppCat ` D ) |
|
| 3 | funcoppc2.c | |- ( ph -> C e. V ) |
|
| 4 | funcoppc2.d | |- ( ph -> D e. W ) |
|
| 5 | 2oppffunc.f | |- ( ph -> F e. ( O Func P ) ) |
|
| 6 | oppfval2 | |- ( F e. ( O Func P ) -> ( oppFunc ` F ) = <. ( 1st ` F ) , tpos ( 2nd ` F ) >. ) |
|
| 7 | 5 6 | syl | |- ( ph -> ( oppFunc ` F ) = <. ( 1st ` F ) , tpos ( 2nd ` F ) >. ) |
| 8 | 5 | func1st2nd | |- ( ph -> ( 1st ` F ) ( O Func P ) ( 2nd ` F ) ) |
| 9 | 1 2 3 4 8 | funcoppc2 | |- ( ph -> ( 1st ` F ) ( C Func D ) tpos ( 2nd ` F ) ) |
| 10 | df-br | |- ( ( 1st ` F ) ( C Func D ) tpos ( 2nd ` F ) <-> <. ( 1st ` F ) , tpos ( 2nd ` F ) >. e. ( C Func D ) ) |
|
| 11 | 9 10 | sylib | |- ( ph -> <. ( 1st ` F ) , tpos ( 2nd ` F ) >. e. ( C Func D ) ) |
| 12 | 7 11 | eqeltrd | |- ( ph -> ( oppFunc ` F ) e. ( C Func D ) ) |