This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A functor on opposite categories yields a functor on the original categories. (Contributed by Zhi Wang, 14-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | funcoppc2.o | ||
| funcoppc2.p | |||
| funcoppc2.c | |||
| funcoppc2.d | |||
| funcoppc5.f | No typesetting found for |- ( ph -> ( oppFunc ` F ) e. ( O Func P ) ) with typecode |- | ||
| Assertion | funcoppc5 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcoppc2.o | ||
| 2 | funcoppc2.p | ||
| 3 | funcoppc2.c | ||
| 4 | funcoppc2.d | ||
| 5 | funcoppc5.f | Could not format ( ph -> ( oppFunc ` F ) e. ( O Func P ) ) : No typesetting found for |- ( ph -> ( oppFunc ` F ) e. ( O Func P ) ) with typecode |- | |
| 6 | relfunc | ||
| 7 | eqid | Could not format ( oppFunc ` F ) = ( oppFunc ` F ) : No typesetting found for |- ( oppFunc ` F ) = ( oppFunc ` F ) with typecode |- | |
| 8 | 5 6 7 | oppfrcl | |
| 9 | 1st2nd2 | ||
| 10 | 8 9 | syl | |
| 11 | 10 | fveq2d | Could not format ( ph -> ( oppFunc ` F ) = ( oppFunc ` <. ( 1st ` F ) , ( 2nd ` F ) >. ) ) : No typesetting found for |- ( ph -> ( oppFunc ` F ) = ( oppFunc ` <. ( 1st ` F ) , ( 2nd ` F ) >. ) ) with typecode |- |
| 12 | df-ov | Could not format ( ( 1st ` F ) oppFunc ( 2nd ` F ) ) = ( oppFunc ` <. ( 1st ` F ) , ( 2nd ` F ) >. ) : No typesetting found for |- ( ( 1st ` F ) oppFunc ( 2nd ` F ) ) = ( oppFunc ` <. ( 1st ` F ) , ( 2nd ` F ) >. ) with typecode |- | |
| 13 | 11 12 | eqtr4di | Could not format ( ph -> ( oppFunc ` F ) = ( ( 1st ` F ) oppFunc ( 2nd ` F ) ) ) : No typesetting found for |- ( ph -> ( oppFunc ` F ) = ( ( 1st ` F ) oppFunc ( 2nd ` F ) ) ) with typecode |- |
| 14 | 13 5 | eqeltrrd | Could not format ( ph -> ( ( 1st ` F ) oppFunc ( 2nd ` F ) ) e. ( O Func P ) ) : No typesetting found for |- ( ph -> ( ( 1st ` F ) oppFunc ( 2nd ` F ) ) e. ( O Func P ) ) with typecode |- |
| 15 | 1 2 3 4 14 | funcoppc4 | |
| 16 | df-br | ||
| 17 | 15 16 | sylib | |
| 18 | 10 17 | eqeltrd |