This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The converse triple of ordered pairs is a function if the second members are pairwise different. Note that the second members need not be sets. (Contributed by AV, 23-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | funcnvtp | |- ( ( ( A e. U /\ C e. V /\ E e. W ) /\ ( B =/= D /\ B =/= F /\ D =/= F ) ) -> Fun `' { <. A , B >. , <. C , D >. , <. E , F >. } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | |- ( ( A e. U /\ C e. V /\ E e. W ) -> A e. U ) |
|
| 2 | simp2 | |- ( ( A e. U /\ C e. V /\ E e. W ) -> C e. V ) |
|
| 3 | simp1 | |- ( ( B =/= D /\ B =/= F /\ D =/= F ) -> B =/= D ) |
|
| 4 | funcnvpr | |- ( ( A e. U /\ C e. V /\ B =/= D ) -> Fun `' { <. A , B >. , <. C , D >. } ) |
|
| 5 | 1 2 3 4 | syl2an3an | |- ( ( ( A e. U /\ C e. V /\ E e. W ) /\ ( B =/= D /\ B =/= F /\ D =/= F ) ) -> Fun `' { <. A , B >. , <. C , D >. } ) |
| 6 | funcnvsn | |- Fun `' { <. E , F >. } |
|
| 7 | 6 | a1i | |- ( ( ( A e. U /\ C e. V /\ E e. W ) /\ ( B =/= D /\ B =/= F /\ D =/= F ) ) -> Fun `' { <. E , F >. } ) |
| 8 | df-rn | |- ran { <. A , B >. , <. C , D >. } = dom `' { <. A , B >. , <. C , D >. } |
|
| 9 | rnpropg | |- ( ( A e. U /\ C e. V ) -> ran { <. A , B >. , <. C , D >. } = { B , D } ) |
|
| 10 | 8 9 | eqtr3id | |- ( ( A e. U /\ C e. V ) -> dom `' { <. A , B >. , <. C , D >. } = { B , D } ) |
| 11 | 10 | 3adant3 | |- ( ( A e. U /\ C e. V /\ E e. W ) -> dom `' { <. A , B >. , <. C , D >. } = { B , D } ) |
| 12 | df-rn | |- ran { <. E , F >. } = dom `' { <. E , F >. } |
|
| 13 | rnsnopg | |- ( E e. W -> ran { <. E , F >. } = { F } ) |
|
| 14 | 12 13 | eqtr3id | |- ( E e. W -> dom `' { <. E , F >. } = { F } ) |
| 15 | 14 | 3ad2ant3 | |- ( ( A e. U /\ C e. V /\ E e. W ) -> dom `' { <. E , F >. } = { F } ) |
| 16 | 11 15 | ineq12d | |- ( ( A e. U /\ C e. V /\ E e. W ) -> ( dom `' { <. A , B >. , <. C , D >. } i^i dom `' { <. E , F >. } ) = ( { B , D } i^i { F } ) ) |
| 17 | disjprsn | |- ( ( B =/= F /\ D =/= F ) -> ( { B , D } i^i { F } ) = (/) ) |
|
| 18 | 17 | 3adant1 | |- ( ( B =/= D /\ B =/= F /\ D =/= F ) -> ( { B , D } i^i { F } ) = (/) ) |
| 19 | 16 18 | sylan9eq | |- ( ( ( A e. U /\ C e. V /\ E e. W ) /\ ( B =/= D /\ B =/= F /\ D =/= F ) ) -> ( dom `' { <. A , B >. , <. C , D >. } i^i dom `' { <. E , F >. } ) = (/) ) |
| 20 | funun | |- ( ( ( Fun `' { <. A , B >. , <. C , D >. } /\ Fun `' { <. E , F >. } ) /\ ( dom `' { <. A , B >. , <. C , D >. } i^i dom `' { <. E , F >. } ) = (/) ) -> Fun ( `' { <. A , B >. , <. C , D >. } u. `' { <. E , F >. } ) ) |
|
| 21 | 5 7 19 20 | syl21anc | |- ( ( ( A e. U /\ C e. V /\ E e. W ) /\ ( B =/= D /\ B =/= F /\ D =/= F ) ) -> Fun ( `' { <. A , B >. , <. C , D >. } u. `' { <. E , F >. } ) ) |
| 22 | df-tp | |- { <. A , B >. , <. C , D >. , <. E , F >. } = ( { <. A , B >. , <. C , D >. } u. { <. E , F >. } ) |
|
| 23 | 22 | cnveqi | |- `' { <. A , B >. , <. C , D >. , <. E , F >. } = `' ( { <. A , B >. , <. C , D >. } u. { <. E , F >. } ) |
| 24 | cnvun | |- `' ( { <. A , B >. , <. C , D >. } u. { <. E , F >. } ) = ( `' { <. A , B >. , <. C , D >. } u. `' { <. E , F >. } ) |
|
| 25 | 23 24 | eqtri | |- `' { <. A , B >. , <. C , D >. , <. E , F >. } = ( `' { <. A , B >. , <. C , D >. } u. `' { <. E , F >. } ) |
| 26 | 25 | funeqi | |- ( Fun `' { <. A , B >. , <. C , D >. , <. E , F >. } <-> Fun ( `' { <. A , B >. , <. C , D >. } u. `' { <. E , F >. } ) ) |
| 27 | 21 26 | sylibr | |- ( ( ( A e. U /\ C e. V /\ E e. W ) /\ ( B =/= D /\ B =/= F /\ D =/= F ) ) -> Fun `' { <. A , B >. , <. C , D >. , <. E , F >. } ) |