This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The converse singleton of an ordered pair is a function. This is equivalent to funsn via cnvsn , but stating it this way allows to skip the sethood assumptions on A and B . (Contributed by NM, 30-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | funcnvsn | |- Fun `' { <. A , B >. } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnv | |- Rel `' { <. A , B >. } |
|
| 2 | moeq | |- E* y y = A |
|
| 3 | vex | |- x e. _V |
|
| 4 | vex | |- y e. _V |
|
| 5 | 3 4 | brcnv | |- ( x `' { <. A , B >. } y <-> y { <. A , B >. } x ) |
| 6 | df-br | |- ( y { <. A , B >. } x <-> <. y , x >. e. { <. A , B >. } ) |
|
| 7 | 5 6 | bitri | |- ( x `' { <. A , B >. } y <-> <. y , x >. e. { <. A , B >. } ) |
| 8 | elsni | |- ( <. y , x >. e. { <. A , B >. } -> <. y , x >. = <. A , B >. ) |
|
| 9 | 4 3 | opth1 | |- ( <. y , x >. = <. A , B >. -> y = A ) |
| 10 | 8 9 | syl | |- ( <. y , x >. e. { <. A , B >. } -> y = A ) |
| 11 | 7 10 | sylbi | |- ( x `' { <. A , B >. } y -> y = A ) |
| 12 | 11 | moimi | |- ( E* y y = A -> E* y x `' { <. A , B >. } y ) |
| 13 | 2 12 | ax-mp | |- E* y x `' { <. A , B >. } y |
| 14 | 13 | ax-gen | |- A. x E* y x `' { <. A , B >. } y |
| 15 | dffun6 | |- ( Fun `' { <. A , B >. } <-> ( Rel `' { <. A , B >. } /\ A. x E* y x `' { <. A , B >. } y ) ) |
|
| 16 | 1 14 15 | mpbir2an | |- Fun `' { <. A , B >. } |