This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The converse pair of ordered pairs is a function if the second members are different. Note that the second members need not be sets. (Contributed by AV, 23-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | funcnvpr | |- ( ( A e. U /\ C e. V /\ B =/= D ) -> Fun `' { <. A , B >. , <. C , D >. } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcnvsn | |- Fun `' { <. A , B >. } |
|
| 2 | funcnvsn | |- Fun `' { <. C , D >. } |
|
| 3 | 1 2 | pm3.2i | |- ( Fun `' { <. A , B >. } /\ Fun `' { <. C , D >. } ) |
| 4 | df-rn | |- ran { <. A , B >. } = dom `' { <. A , B >. } |
|
| 5 | rnsnopg | |- ( A e. U -> ran { <. A , B >. } = { B } ) |
|
| 6 | 4 5 | eqtr3id | |- ( A e. U -> dom `' { <. A , B >. } = { B } ) |
| 7 | df-rn | |- ran { <. C , D >. } = dom `' { <. C , D >. } |
|
| 8 | rnsnopg | |- ( C e. V -> ran { <. C , D >. } = { D } ) |
|
| 9 | 7 8 | eqtr3id | |- ( C e. V -> dom `' { <. C , D >. } = { D } ) |
| 10 | 6 9 | ineqan12d | |- ( ( A e. U /\ C e. V ) -> ( dom `' { <. A , B >. } i^i dom `' { <. C , D >. } ) = ( { B } i^i { D } ) ) |
| 11 | 10 | 3adant3 | |- ( ( A e. U /\ C e. V /\ B =/= D ) -> ( dom `' { <. A , B >. } i^i dom `' { <. C , D >. } ) = ( { B } i^i { D } ) ) |
| 12 | disjsn2 | |- ( B =/= D -> ( { B } i^i { D } ) = (/) ) |
|
| 13 | 12 | 3ad2ant3 | |- ( ( A e. U /\ C e. V /\ B =/= D ) -> ( { B } i^i { D } ) = (/) ) |
| 14 | 11 13 | eqtrd | |- ( ( A e. U /\ C e. V /\ B =/= D ) -> ( dom `' { <. A , B >. } i^i dom `' { <. C , D >. } ) = (/) ) |
| 15 | funun | |- ( ( ( Fun `' { <. A , B >. } /\ Fun `' { <. C , D >. } ) /\ ( dom `' { <. A , B >. } i^i dom `' { <. C , D >. } ) = (/) ) -> Fun ( `' { <. A , B >. } u. `' { <. C , D >. } ) ) |
|
| 16 | 3 14 15 | sylancr | |- ( ( A e. U /\ C e. V /\ B =/= D ) -> Fun ( `' { <. A , B >. } u. `' { <. C , D >. } ) ) |
| 17 | df-pr | |- { <. A , B >. , <. C , D >. } = ( { <. A , B >. } u. { <. C , D >. } ) |
|
| 18 | 17 | cnveqi | |- `' { <. A , B >. , <. C , D >. } = `' ( { <. A , B >. } u. { <. C , D >. } ) |
| 19 | cnvun | |- `' ( { <. A , B >. } u. { <. C , D >. } ) = ( `' { <. A , B >. } u. `' { <. C , D >. } ) |
|
| 20 | 18 19 | eqtri | |- `' { <. A , B >. , <. C , D >. } = ( `' { <. A , B >. } u. `' { <. C , D >. } ) |
| 21 | 20 | funeqi | |- ( Fun `' { <. A , B >. , <. C , D >. } <-> Fun ( `' { <. A , B >. } u. `' { <. C , D >. } ) ) |
| 22 | 16 21 | sylibr | |- ( ( A e. U /\ C e. V /\ B =/= D ) -> Fun `' { <. A , B >. , <. C , D >. } ) |