This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The converse quadruple of ordered pairs is a function if the second members are pairwise different. Note that the second members need not be sets. (Contributed by AV, 23-Jan-2021) (Proof shortened by JJ, 14-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | funcnvqp | |- ( ( ( ( A e. U /\ C e. V ) /\ ( E e. W /\ G e. T ) ) /\ ( ( B =/= D /\ B =/= F /\ B =/= H ) /\ ( D =/= F /\ D =/= H ) /\ F =/= H ) ) -> Fun `' ( { <. A , B >. , <. C , D >. } u. { <. E , F >. , <. G , H >. } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcnvpr | |- ( ( A e. U /\ C e. V /\ B =/= D ) -> Fun `' { <. A , B >. , <. C , D >. } ) |
|
| 2 | 1 | 3expa | |- ( ( ( A e. U /\ C e. V ) /\ B =/= D ) -> Fun `' { <. A , B >. , <. C , D >. } ) |
| 3 | 2 | 3ad2antr1 | |- ( ( ( A e. U /\ C e. V ) /\ ( B =/= D /\ B =/= F /\ B =/= H ) ) -> Fun `' { <. A , B >. , <. C , D >. } ) |
| 4 | 3 | ad2ant2r | |- ( ( ( ( A e. U /\ C e. V ) /\ ( E e. W /\ G e. T ) ) /\ ( ( B =/= D /\ B =/= F /\ B =/= H ) /\ F =/= H ) ) -> Fun `' { <. A , B >. , <. C , D >. } ) |
| 5 | 4 | 3adantr2 | |- ( ( ( ( A e. U /\ C e. V ) /\ ( E e. W /\ G e. T ) ) /\ ( ( B =/= D /\ B =/= F /\ B =/= H ) /\ ( D =/= F /\ D =/= H ) /\ F =/= H ) ) -> Fun `' { <. A , B >. , <. C , D >. } ) |
| 6 | funcnvpr | |- ( ( E e. W /\ G e. T /\ F =/= H ) -> Fun `' { <. E , F >. , <. G , H >. } ) |
|
| 7 | 6 | 3expa | |- ( ( ( E e. W /\ G e. T ) /\ F =/= H ) -> Fun `' { <. E , F >. , <. G , H >. } ) |
| 8 | 7 | ad2ant2l | |- ( ( ( ( A e. U /\ C e. V ) /\ ( E e. W /\ G e. T ) ) /\ ( ( B =/= D /\ B =/= F /\ B =/= H ) /\ F =/= H ) ) -> Fun `' { <. E , F >. , <. G , H >. } ) |
| 9 | 8 | 3adantr2 | |- ( ( ( ( A e. U /\ C e. V ) /\ ( E e. W /\ G e. T ) ) /\ ( ( B =/= D /\ B =/= F /\ B =/= H ) /\ ( D =/= F /\ D =/= H ) /\ F =/= H ) ) -> Fun `' { <. E , F >. , <. G , H >. } ) |
| 10 | df-rn | |- ran { <. A , B >. , <. C , D >. } = dom `' { <. A , B >. , <. C , D >. } |
|
| 11 | rnpropg | |- ( ( A e. U /\ C e. V ) -> ran { <. A , B >. , <. C , D >. } = { B , D } ) |
|
| 12 | 10 11 | eqtr3id | |- ( ( A e. U /\ C e. V ) -> dom `' { <. A , B >. , <. C , D >. } = { B , D } ) |
| 13 | df-rn | |- ran { <. E , F >. , <. G , H >. } = dom `' { <. E , F >. , <. G , H >. } |
|
| 14 | rnpropg | |- ( ( E e. W /\ G e. T ) -> ran { <. E , F >. , <. G , H >. } = { F , H } ) |
|
| 15 | 13 14 | eqtr3id | |- ( ( E e. W /\ G e. T ) -> dom `' { <. E , F >. , <. G , H >. } = { F , H } ) |
| 16 | 12 15 | ineqan12d | |- ( ( ( A e. U /\ C e. V ) /\ ( E e. W /\ G e. T ) ) -> ( dom `' { <. A , B >. , <. C , D >. } i^i dom `' { <. E , F >. , <. G , H >. } ) = ( { B , D } i^i { F , H } ) ) |
| 17 | disjpr2 | |- ( ( ( B =/= F /\ D =/= F ) /\ ( B =/= H /\ D =/= H ) ) -> ( { B , D } i^i { F , H } ) = (/) ) |
|
| 18 | 17 | an4s | |- ( ( ( B =/= F /\ B =/= H ) /\ ( D =/= F /\ D =/= H ) ) -> ( { B , D } i^i { F , H } ) = (/) ) |
| 19 | 18 | 3adantl1 | |- ( ( ( B =/= D /\ B =/= F /\ B =/= H ) /\ ( D =/= F /\ D =/= H ) ) -> ( { B , D } i^i { F , H } ) = (/) ) |
| 20 | 19 | 3adant3 | |- ( ( ( B =/= D /\ B =/= F /\ B =/= H ) /\ ( D =/= F /\ D =/= H ) /\ F =/= H ) -> ( { B , D } i^i { F , H } ) = (/) ) |
| 21 | 16 20 | sylan9eq | |- ( ( ( ( A e. U /\ C e. V ) /\ ( E e. W /\ G e. T ) ) /\ ( ( B =/= D /\ B =/= F /\ B =/= H ) /\ ( D =/= F /\ D =/= H ) /\ F =/= H ) ) -> ( dom `' { <. A , B >. , <. C , D >. } i^i dom `' { <. E , F >. , <. G , H >. } ) = (/) ) |
| 22 | funun | |- ( ( ( Fun `' { <. A , B >. , <. C , D >. } /\ Fun `' { <. E , F >. , <. G , H >. } ) /\ ( dom `' { <. A , B >. , <. C , D >. } i^i dom `' { <. E , F >. , <. G , H >. } ) = (/) ) -> Fun ( `' { <. A , B >. , <. C , D >. } u. `' { <. E , F >. , <. G , H >. } ) ) |
|
| 23 | 5 9 21 22 | syl21anc | |- ( ( ( ( A e. U /\ C e. V ) /\ ( E e. W /\ G e. T ) ) /\ ( ( B =/= D /\ B =/= F /\ B =/= H ) /\ ( D =/= F /\ D =/= H ) /\ F =/= H ) ) -> Fun ( `' { <. A , B >. , <. C , D >. } u. `' { <. E , F >. , <. G , H >. } ) ) |
| 24 | cnvun | |- `' ( { <. A , B >. , <. C , D >. } u. { <. E , F >. , <. G , H >. } ) = ( `' { <. A , B >. , <. C , D >. } u. `' { <. E , F >. , <. G , H >. } ) |
|
| 25 | 24 | funeqi | |- ( Fun `' ( { <. A , B >. , <. C , D >. } u. { <. E , F >. , <. G , H >. } ) <-> Fun ( `' { <. A , B >. , <. C , D >. } u. `' { <. E , F >. , <. G , H >. } ) ) |
| 26 | 23 25 | sylibr | |- ( ( ( ( A e. U /\ C e. V ) /\ ( E e. W /\ G e. T ) ) /\ ( ( B =/= D /\ B =/= F /\ B =/= H ) /\ ( D =/= F /\ D =/= H ) /\ F =/= H ) ) -> Fun `' ( { <. A , B >. , <. C , D >. } u. { <. E , F >. , <. G , H >. } ) ) |