This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A functor to a terminal category is full iff all hom-sets of the source category are non-empty. (Contributed by Zhi Wang, 17-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fulltermc.b | |- B = ( Base ` C ) |
|
| fulltermc.h | |- H = ( Hom ` C ) |
||
| fulltermc.d | |- ( ph -> D e. TermCat ) |
||
| fulltermc.f | |- ( ph -> F ( C Func D ) G ) |
||
| Assertion | fulltermc | |- ( ph -> ( F ( C Full D ) G <-> A. x e. B A. y e. B -. ( x H y ) = (/) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fulltermc.b | |- B = ( Base ` C ) |
|
| 2 | fulltermc.h | |- H = ( Hom ` C ) |
|
| 3 | fulltermc.d | |- ( ph -> D e. TermCat ) |
|
| 4 | fulltermc.f | |- ( ph -> F ( C Func D ) G ) |
|
| 5 | eqid | |- ( Hom ` D ) = ( Hom ` D ) |
|
| 6 | 3 | termcthind | |- ( ph -> D e. ThinCat ) |
| 7 | 1 5 2 6 4 | fullthinc | |- ( ph -> ( F ( C Full D ) G <-> A. x e. B A. y e. B ( ( x H y ) = (/) -> ( ( F ` x ) ( Hom ` D ) ( F ` y ) ) = (/) ) ) ) |
| 8 | 3 | adantr | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> D e. TermCat ) |
| 9 | eqid | |- ( Base ` D ) = ( Base ` D ) |
|
| 10 | 1 9 4 | funcf1 | |- ( ph -> F : B --> ( Base ` D ) ) |
| 11 | 10 | ffvelcdmda | |- ( ( ph /\ x e. B ) -> ( F ` x ) e. ( Base ` D ) ) |
| 12 | 11 | adantrr | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( F ` x ) e. ( Base ` D ) ) |
| 13 | 10 | ffvelcdmda | |- ( ( ph /\ y e. B ) -> ( F ` y ) e. ( Base ` D ) ) |
| 14 | 13 | adantrl | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( F ` y ) e. ( Base ` D ) ) |
| 15 | 8 9 12 14 5 | termchomn0 | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> -. ( ( F ` x ) ( Hom ` D ) ( F ` y ) ) = (/) ) |
| 16 | biimt | |- ( -. ( ( F ` x ) ( Hom ` D ) ( F ` y ) ) = (/) -> ( -. ( x H y ) = (/) <-> ( -. ( ( F ` x ) ( Hom ` D ) ( F ` y ) ) = (/) -> -. ( x H y ) = (/) ) ) ) |
|
| 17 | 15 16 | syl | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( -. ( x H y ) = (/) <-> ( -. ( ( F ` x ) ( Hom ` D ) ( F ` y ) ) = (/) -> -. ( x H y ) = (/) ) ) ) |
| 18 | con34b | |- ( ( ( x H y ) = (/) -> ( ( F ` x ) ( Hom ` D ) ( F ` y ) ) = (/) ) <-> ( -. ( ( F ` x ) ( Hom ` D ) ( F ` y ) ) = (/) -> -. ( x H y ) = (/) ) ) |
|
| 19 | 17 18 | bitr4di | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( -. ( x H y ) = (/) <-> ( ( x H y ) = (/) -> ( ( F ` x ) ( Hom ` D ) ( F ` y ) ) = (/) ) ) ) |
| 20 | 19 | 2ralbidva | |- ( ph -> ( A. x e. B A. y e. B -. ( x H y ) = (/) <-> A. x e. B A. y e. B ( ( x H y ) = (/) -> ( ( F ` x ) ( Hom ` D ) ( F ` y ) ) = (/) ) ) ) |
| 21 | 7 20 | bitr4d | |- ( ph -> ( F ( C Full D ) G <-> A. x e. B A. y e. B -. ( x H y ) = (/) ) ) |