This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The function value of the functional part is identical to the original functional value. (Contributed by Scott Fenton, 17-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | funpartfv | |- ( Funpart F ` A ) = ( F ` A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-funpart | |- Funpart F = ( F |` dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) ) |
|
| 2 | 1 | fveq1i | |- ( Funpart F ` A ) = ( ( F |` dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) ) ` A ) |
| 3 | fvres | |- ( A e. dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) -> ( ( F |` dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) ) ` A ) = ( F ` A ) ) |
|
| 4 | nfvres | |- ( -. A e. dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) -> ( ( F |` dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) ) ` A ) = (/) ) |
|
| 5 | funpartlem | |- ( A e. dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) <-> E. x ( F " { A } ) = { x } ) |
|
| 6 | eusn | |- ( E! x x e. ( F " { A } ) <-> E. x ( F " { A } ) = { x } ) |
|
| 7 | 5 6 | bitr4i | |- ( A e. dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) <-> E! x x e. ( F " { A } ) ) |
| 8 | elimasng | |- ( ( A e. _V /\ x e. _V ) -> ( x e. ( F " { A } ) <-> <. A , x >. e. F ) ) |
|
| 9 | 8 | elvd | |- ( A e. _V -> ( x e. ( F " { A } ) <-> <. A , x >. e. F ) ) |
| 10 | df-br | |- ( A F x <-> <. A , x >. e. F ) |
|
| 11 | 9 10 | bitr4di | |- ( A e. _V -> ( x e. ( F " { A } ) <-> A F x ) ) |
| 12 | 11 | eubidv | |- ( A e. _V -> ( E! x x e. ( F " { A } ) <-> E! x A F x ) ) |
| 13 | 7 12 | bitrid | |- ( A e. _V -> ( A e. dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) <-> E! x A F x ) ) |
| 14 | 13 | notbid | |- ( A e. _V -> ( -. A e. dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) <-> -. E! x A F x ) ) |
| 15 | tz6.12-2 | |- ( -. E! x A F x -> ( F ` A ) = (/) ) |
|
| 16 | 14 15 | biimtrdi | |- ( A e. _V -> ( -. A e. dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) -> ( F ` A ) = (/) ) ) |
| 17 | fvprc | |- ( -. A e. _V -> ( F ` A ) = (/) ) |
|
| 18 | 17 | a1d | |- ( -. A e. _V -> ( -. A e. dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) -> ( F ` A ) = (/) ) ) |
| 19 | 16 18 | pm2.61i | |- ( -. A e. dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) -> ( F ` A ) = (/) ) |
| 20 | 4 19 | eqtr4d | |- ( -. A e. dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) -> ( ( F |` dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) ) ` A ) = ( F ` A ) ) |
| 21 | 3 20 | pm2.61i | |- ( ( F |` dom ( ( Image F o. Singleton ) i^i ( _V X. Singletons ) ) ) ` A ) = ( F ` A ) |
| 22 | 2 21 | eqtri | |- ( Funpart F ` A ) = ( F ` A ) |