This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Right identity of natural transformations. (Contributed by Mario Carneiro, 6-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fuclid.q | |- Q = ( C FuncCat D ) |
|
| fuclid.n | |- N = ( C Nat D ) |
||
| fuclid.x | |- .xb = ( comp ` Q ) |
||
| fuclid.1 | |- .1. = ( Id ` D ) |
||
| fuclid.r | |- ( ph -> R e. ( F N G ) ) |
||
| Assertion | fucrid | |- ( ph -> ( R ( <. F , F >. .xb G ) ( .1. o. ( 1st ` F ) ) ) = R ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fuclid.q | |- Q = ( C FuncCat D ) |
|
| 2 | fuclid.n | |- N = ( C Nat D ) |
|
| 3 | fuclid.x | |- .xb = ( comp ` Q ) |
|
| 4 | fuclid.1 | |- .1. = ( Id ` D ) |
|
| 5 | fuclid.r | |- ( ph -> R e. ( F N G ) ) |
|
| 6 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 7 | eqid | |- ( Base ` D ) = ( Base ` D ) |
|
| 8 | relfunc | |- Rel ( C Func D ) |
|
| 9 | 2 | natrcl | |- ( R e. ( F N G ) -> ( F e. ( C Func D ) /\ G e. ( C Func D ) ) ) |
| 10 | 5 9 | syl | |- ( ph -> ( F e. ( C Func D ) /\ G e. ( C Func D ) ) ) |
| 11 | 10 | simpld | |- ( ph -> F e. ( C Func D ) ) |
| 12 | 1st2ndbr | |- ( ( Rel ( C Func D ) /\ F e. ( C Func D ) ) -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
|
| 13 | 8 11 12 | sylancr | |- ( ph -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
| 14 | 6 7 13 | funcf1 | |- ( ph -> ( 1st ` F ) : ( Base ` C ) --> ( Base ` D ) ) |
| 15 | fvco3 | |- ( ( ( 1st ` F ) : ( Base ` C ) --> ( Base ` D ) /\ x e. ( Base ` C ) ) -> ( ( .1. o. ( 1st ` F ) ) ` x ) = ( .1. ` ( ( 1st ` F ) ` x ) ) ) |
|
| 16 | 14 15 | sylan | |- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( .1. o. ( 1st ` F ) ) ` x ) = ( .1. ` ( ( 1st ` F ) ` x ) ) ) |
| 17 | 16 | oveq2d | |- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( R ` x ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` F ) ` x ) >. ( comp ` D ) ( ( 1st ` G ) ` x ) ) ( ( .1. o. ( 1st ` F ) ) ` x ) ) = ( ( R ` x ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` F ) ` x ) >. ( comp ` D ) ( ( 1st ` G ) ` x ) ) ( .1. ` ( ( 1st ` F ) ` x ) ) ) ) |
| 18 | eqid | |- ( Hom ` D ) = ( Hom ` D ) |
|
| 19 | funcrcl | |- ( F e. ( C Func D ) -> ( C e. Cat /\ D e. Cat ) ) |
|
| 20 | 11 19 | syl | |- ( ph -> ( C e. Cat /\ D e. Cat ) ) |
| 21 | 20 | simprd | |- ( ph -> D e. Cat ) |
| 22 | 21 | adantr | |- ( ( ph /\ x e. ( Base ` C ) ) -> D e. Cat ) |
| 23 | 14 | ffvelcdmda | |- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( 1st ` F ) ` x ) e. ( Base ` D ) ) |
| 24 | eqid | |- ( comp ` D ) = ( comp ` D ) |
|
| 25 | 10 | simprd | |- ( ph -> G e. ( C Func D ) ) |
| 26 | 1st2ndbr | |- ( ( Rel ( C Func D ) /\ G e. ( C Func D ) ) -> ( 1st ` G ) ( C Func D ) ( 2nd ` G ) ) |
|
| 27 | 8 25 26 | sylancr | |- ( ph -> ( 1st ` G ) ( C Func D ) ( 2nd ` G ) ) |
| 28 | 6 7 27 | funcf1 | |- ( ph -> ( 1st ` G ) : ( Base ` C ) --> ( Base ` D ) ) |
| 29 | 28 | ffvelcdmda | |- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( 1st ` G ) ` x ) e. ( Base ` D ) ) |
| 30 | 2 5 | nat1st2nd | |- ( ph -> R e. ( <. ( 1st ` F ) , ( 2nd ` F ) >. N <. ( 1st ` G ) , ( 2nd ` G ) >. ) ) |
| 31 | 30 | adantr | |- ( ( ph /\ x e. ( Base ` C ) ) -> R e. ( <. ( 1st ` F ) , ( 2nd ` F ) >. N <. ( 1st ` G ) , ( 2nd ` G ) >. ) ) |
| 32 | simpr | |- ( ( ph /\ x e. ( Base ` C ) ) -> x e. ( Base ` C ) ) |
|
| 33 | 2 31 6 18 32 | natcl | |- ( ( ph /\ x e. ( Base ` C ) ) -> ( R ` x ) e. ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` G ) ` x ) ) ) |
| 34 | 7 18 4 22 23 24 29 33 | catrid | |- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( R ` x ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` F ) ` x ) >. ( comp ` D ) ( ( 1st ` G ) ` x ) ) ( .1. ` ( ( 1st ` F ) ` x ) ) ) = ( R ` x ) ) |
| 35 | 17 34 | eqtrd | |- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( R ` x ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` F ) ` x ) >. ( comp ` D ) ( ( 1st ` G ) ` x ) ) ( ( .1. o. ( 1st ` F ) ) ` x ) ) = ( R ` x ) ) |
| 36 | 35 | mpteq2dva | |- ( ph -> ( x e. ( Base ` C ) |-> ( ( R ` x ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` F ) ` x ) >. ( comp ` D ) ( ( 1st ` G ) ` x ) ) ( ( .1. o. ( 1st ` F ) ) ` x ) ) ) = ( x e. ( Base ` C ) |-> ( R ` x ) ) ) |
| 37 | 1 2 4 11 | fucidcl | |- ( ph -> ( .1. o. ( 1st ` F ) ) e. ( F N F ) ) |
| 38 | 1 2 6 24 3 37 5 | fucco | |- ( ph -> ( R ( <. F , F >. .xb G ) ( .1. o. ( 1st ` F ) ) ) = ( x e. ( Base ` C ) |-> ( ( R ` x ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` F ) ` x ) >. ( comp ` D ) ( ( 1st ` G ) ` x ) ) ( ( .1. o. ( 1st ` F ) ) ` x ) ) ) ) |
| 39 | 2 30 6 | natfn | |- ( ph -> R Fn ( Base ` C ) ) |
| 40 | dffn5 | |- ( R Fn ( Base ` C ) <-> R = ( x e. ( Base ` C ) |-> ( R ` x ) ) ) |
|
| 41 | 39 40 | sylib | |- ( ph -> R = ( x e. ( Base ` C ) |-> ( R ` x ) ) ) |
| 42 | 36 38 41 | 3eqtr4d | |- ( ph -> ( R ( <. F , F >. .xb G ) ( .1. o. ( 1st ` F ) ) ) = R ) |