This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If every term in one finite sum is less than the corresponding term in another, then the first sum is less than the second. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 3-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsumlt.1 | ||
| fsumlt.2 | |||
| fsumlt.3 | |||
| fsumlt.4 | |||
| fsumlt.5 | |||
| Assertion | fsumlt |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsumlt.1 | ||
| 2 | fsumlt.2 | ||
| 3 | fsumlt.3 | ||
| 4 | fsumlt.4 | ||
| 5 | fsumlt.5 | ||
| 6 | difrp | ||
| 7 | 3 4 6 | syl2anc | |
| 8 | 5 7 | mpbid | |
| 9 | 1 2 8 | fsumrpcl | |
| 10 | 9 | rpgt0d | |
| 11 | 4 | recnd | |
| 12 | 3 | recnd | |
| 13 | 1 11 12 | fsumsub | |
| 14 | 10 13 | breqtrd | |
| 15 | 1 3 | fsumrecl | |
| 16 | 1 4 | fsumrecl | |
| 17 | 15 16 | posdifd | |
| 18 | 14 17 | mpbird |