This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The finite sum of continuous complex function is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsumcncf.x | |- ( ph -> X C_ CC ) |
|
| fsumcncf.a | |- ( ph -> A e. Fin ) |
||
| fsumcncf.cncf | |- ( ( ph /\ k e. A ) -> ( x e. X |-> B ) e. ( X -cn-> CC ) ) |
||
| Assertion | fsumcncf | |- ( ph -> ( x e. X |-> sum_ k e. A B ) e. ( X -cn-> CC ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsumcncf.x | |- ( ph -> X C_ CC ) |
|
| 2 | fsumcncf.a | |- ( ph -> A e. Fin ) |
|
| 3 | fsumcncf.cncf | |- ( ( ph /\ k e. A ) -> ( x e. X |-> B ) e. ( X -cn-> CC ) ) |
|
| 4 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 5 | 4 | cnfldtopon | |- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
| 6 | 5 | a1i | |- ( ph -> ( TopOpen ` CCfld ) e. ( TopOn ` CC ) ) |
| 7 | resttopon | |- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ X C_ CC ) -> ( ( TopOpen ` CCfld ) |`t X ) e. ( TopOn ` X ) ) |
|
| 8 | 6 1 7 | syl2anc | |- ( ph -> ( ( TopOpen ` CCfld ) |`t X ) e. ( TopOn ` X ) ) |
| 9 | ssidd | |- ( ph -> CC C_ CC ) |
|
| 10 | eqid | |- ( ( TopOpen ` CCfld ) |`t X ) = ( ( TopOpen ` CCfld ) |`t X ) |
|
| 11 | 4 | cnfldtop | |- ( TopOpen ` CCfld ) e. Top |
| 12 | unicntop | |- CC = U. ( TopOpen ` CCfld ) |
|
| 13 | 12 | restid | |- ( ( TopOpen ` CCfld ) e. Top -> ( ( TopOpen ` CCfld ) |`t CC ) = ( TopOpen ` CCfld ) ) |
| 14 | 11 13 | ax-mp | |- ( ( TopOpen ` CCfld ) |`t CC ) = ( TopOpen ` CCfld ) |
| 15 | 14 | eqcomi | |- ( TopOpen ` CCfld ) = ( ( TopOpen ` CCfld ) |`t CC ) |
| 16 | 4 10 15 | cncfcn | |- ( ( X C_ CC /\ CC C_ CC ) -> ( X -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t X ) Cn ( TopOpen ` CCfld ) ) ) |
| 17 | 1 9 16 | syl2anc | |- ( ph -> ( X -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t X ) Cn ( TopOpen ` CCfld ) ) ) |
| 18 | 17 | adantr | |- ( ( ph /\ k e. A ) -> ( X -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t X ) Cn ( TopOpen ` CCfld ) ) ) |
| 19 | 3 18 | eleqtrd | |- ( ( ph /\ k e. A ) -> ( x e. X |-> B ) e. ( ( ( TopOpen ` CCfld ) |`t X ) Cn ( TopOpen ` CCfld ) ) ) |
| 20 | 4 8 2 19 | fsumcnf | |- ( ph -> ( x e. X |-> sum_ k e. A B ) e. ( ( ( TopOpen ` CCfld ) |`t X ) Cn ( TopOpen ` CCfld ) ) ) |
| 21 | 20 17 | eleqtrrd | |- ( ph -> ( x e. X |-> sum_ k e. A B ) e. ( X -cn-> CC ) ) |