This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A periodic continuous function stays continuous if the domain is shifted a period. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cncfperiod.a | |- ( ph -> A C_ CC ) |
|
| cncfperiod.t | |- ( ph -> T e. RR ) |
||
| cncfperiod.b | |- B = { x e. CC | E. y e. A x = ( y + T ) } |
||
| cncfperiod.f | |- ( ph -> F : dom F --> CC ) |
||
| cncfperiod.cssdmf | |- ( ph -> B C_ dom F ) |
||
| cncfperiod.fper | |- ( ( ph /\ x e. A ) -> ( F ` ( x + T ) ) = ( F ` x ) ) |
||
| cncfperiod.fcn | |- ( ph -> ( F |` A ) e. ( A -cn-> CC ) ) |
||
| Assertion | cncfperiod | |- ( ph -> ( F |` B ) e. ( B -cn-> CC ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cncfperiod.a | |- ( ph -> A C_ CC ) |
|
| 2 | cncfperiod.t | |- ( ph -> T e. RR ) |
|
| 3 | cncfperiod.b | |- B = { x e. CC | E. y e. A x = ( y + T ) } |
|
| 4 | cncfperiod.f | |- ( ph -> F : dom F --> CC ) |
|
| 5 | cncfperiod.cssdmf | |- ( ph -> B C_ dom F ) |
|
| 6 | cncfperiod.fper | |- ( ( ph /\ x e. A ) -> ( F ` ( x + T ) ) = ( F ` x ) ) |
|
| 7 | cncfperiod.fcn | |- ( ph -> ( F |` A ) e. ( A -cn-> CC ) ) |
|
| 8 | 4 5 | fssresd | |- ( ph -> ( F |` B ) : B --> CC ) |
| 9 | fvoveq1 | |- ( a = ( x - T ) -> ( abs ` ( a - b ) ) = ( abs ` ( ( x - T ) - b ) ) ) |
|
| 10 | 9 | breq1d | |- ( a = ( x - T ) -> ( ( abs ` ( a - b ) ) < z <-> ( abs ` ( ( x - T ) - b ) ) < z ) ) |
| 11 | 10 | imbrov2fvoveq | |- ( a = ( x - T ) -> ( ( ( abs ` ( a - b ) ) < z -> ( abs ` ( ( ( F |` A ) ` a ) - ( ( F |` A ) ` b ) ) ) < w ) <-> ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( ( F |` A ) ` ( x - T ) ) - ( ( F |` A ) ` b ) ) ) < w ) ) ) |
| 12 | 11 | rexralbidv | |- ( a = ( x - T ) -> ( E. z e. RR+ A. b e. A ( ( abs ` ( a - b ) ) < z -> ( abs ` ( ( ( F |` A ) ` a ) - ( ( F |` A ) ` b ) ) ) < w ) <-> E. z e. RR+ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( ( F |` A ) ` ( x - T ) ) - ( ( F |` A ) ` b ) ) ) < w ) ) ) |
| 13 | 12 | ralbidv | |- ( a = ( x - T ) -> ( A. w e. RR+ E. z e. RR+ A. b e. A ( ( abs ` ( a - b ) ) < z -> ( abs ` ( ( ( F |` A ) ` a ) - ( ( F |` A ) ` b ) ) ) < w ) <-> A. w e. RR+ E. z e. RR+ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( ( F |` A ) ` ( x - T ) ) - ( ( F |` A ) ` b ) ) ) < w ) ) ) |
| 14 | 7 | adantr | |- ( ( ph /\ x e. B ) -> ( F |` A ) e. ( A -cn-> CC ) ) |
| 15 | 1 | adantr | |- ( ( ph /\ x e. B ) -> A C_ CC ) |
| 16 | ssidd | |- ( ( ph /\ x e. B ) -> CC C_ CC ) |
|
| 17 | elcncf | |- ( ( A C_ CC /\ CC C_ CC ) -> ( ( F |` A ) e. ( A -cn-> CC ) <-> ( ( F |` A ) : A --> CC /\ A. a e. A A. w e. RR+ E. z e. RR+ A. b e. A ( ( abs ` ( a - b ) ) < z -> ( abs ` ( ( ( F |` A ) ` a ) - ( ( F |` A ) ` b ) ) ) < w ) ) ) ) |
|
| 18 | 15 16 17 | syl2anc | |- ( ( ph /\ x e. B ) -> ( ( F |` A ) e. ( A -cn-> CC ) <-> ( ( F |` A ) : A --> CC /\ A. a e. A A. w e. RR+ E. z e. RR+ A. b e. A ( ( abs ` ( a - b ) ) < z -> ( abs ` ( ( ( F |` A ) ` a ) - ( ( F |` A ) ` b ) ) ) < w ) ) ) ) |
| 19 | 14 18 | mpbid | |- ( ( ph /\ x e. B ) -> ( ( F |` A ) : A --> CC /\ A. a e. A A. w e. RR+ E. z e. RR+ A. b e. A ( ( abs ` ( a - b ) ) < z -> ( abs ` ( ( ( F |` A ) ` a ) - ( ( F |` A ) ` b ) ) ) < w ) ) ) |
| 20 | 19 | simprd | |- ( ( ph /\ x e. B ) -> A. a e. A A. w e. RR+ E. z e. RR+ A. b e. A ( ( abs ` ( a - b ) ) < z -> ( abs ` ( ( ( F |` A ) ` a ) - ( ( F |` A ) ` b ) ) ) < w ) ) |
| 21 | simpr | |- ( ( ph /\ x e. B ) -> x e. B ) |
|
| 22 | 21 3 | eleqtrdi | |- ( ( ph /\ x e. B ) -> x e. { x e. CC | E. y e. A x = ( y + T ) } ) |
| 23 | rabid | |- ( x e. { x e. CC | E. y e. A x = ( y + T ) } <-> ( x e. CC /\ E. y e. A x = ( y + T ) ) ) |
|
| 24 | 22 23 | sylib | |- ( ( ph /\ x e. B ) -> ( x e. CC /\ E. y e. A x = ( y + T ) ) ) |
| 25 | 24 | simprd | |- ( ( ph /\ x e. B ) -> E. y e. A x = ( y + T ) ) |
| 26 | oveq1 | |- ( x = ( y + T ) -> ( x - T ) = ( ( y + T ) - T ) ) |
|
| 27 | 26 | 3ad2ant3 | |- ( ( ( ph /\ x e. B ) /\ y e. A /\ x = ( y + T ) ) -> ( x - T ) = ( ( y + T ) - T ) ) |
| 28 | 1 | sselda | |- ( ( ph /\ y e. A ) -> y e. CC ) |
| 29 | 2 | recnd | |- ( ph -> T e. CC ) |
| 30 | 29 | adantr | |- ( ( ph /\ y e. A ) -> T e. CC ) |
| 31 | 28 30 | pncand | |- ( ( ph /\ y e. A ) -> ( ( y + T ) - T ) = y ) |
| 32 | 31 | adantlr | |- ( ( ( ph /\ x e. B ) /\ y e. A ) -> ( ( y + T ) - T ) = y ) |
| 33 | 32 | 3adant3 | |- ( ( ( ph /\ x e. B ) /\ y e. A /\ x = ( y + T ) ) -> ( ( y + T ) - T ) = y ) |
| 34 | 27 33 | eqtrd | |- ( ( ( ph /\ x e. B ) /\ y e. A /\ x = ( y + T ) ) -> ( x - T ) = y ) |
| 35 | simp2 | |- ( ( ( ph /\ x e. B ) /\ y e. A /\ x = ( y + T ) ) -> y e. A ) |
|
| 36 | 34 35 | eqeltrd | |- ( ( ( ph /\ x e. B ) /\ y e. A /\ x = ( y + T ) ) -> ( x - T ) e. A ) |
| 37 | 36 | rexlimdv3a | |- ( ( ph /\ x e. B ) -> ( E. y e. A x = ( y + T ) -> ( x - T ) e. A ) ) |
| 38 | 25 37 | mpd | |- ( ( ph /\ x e. B ) -> ( x - T ) e. A ) |
| 39 | 13 20 38 | rspcdva | |- ( ( ph /\ x e. B ) -> A. w e. RR+ E. z e. RR+ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( ( F |` A ) ` ( x - T ) ) - ( ( F |` A ) ` b ) ) ) < w ) ) |
| 40 | 39 | adantrr | |- ( ( ph /\ ( x e. B /\ w e. RR+ ) ) -> A. w e. RR+ E. z e. RR+ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( ( F |` A ) ` ( x - T ) ) - ( ( F |` A ) ` b ) ) ) < w ) ) |
| 41 | simprr | |- ( ( ph /\ ( x e. B /\ w e. RR+ ) ) -> w e. RR+ ) |
|
| 42 | rspa | |- ( ( A. w e. RR+ E. z e. RR+ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( ( F |` A ) ` ( x - T ) ) - ( ( F |` A ) ` b ) ) ) < w ) /\ w e. RR+ ) -> E. z e. RR+ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( ( F |` A ) ` ( x - T ) ) - ( ( F |` A ) ` b ) ) ) < w ) ) |
|
| 43 | 40 41 42 | syl2anc | |- ( ( ph /\ ( x e. B /\ w e. RR+ ) ) -> E. z e. RR+ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( ( F |` A ) ` ( x - T ) ) - ( ( F |` A ) ` b ) ) ) < w ) ) |
| 44 | simpl1l | |- ( ( ( ( ph /\ ( x e. B /\ w e. RR+ ) ) /\ z e. RR+ /\ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( ( F |` A ) ` ( x - T ) ) - ( ( F |` A ) ` b ) ) ) < w ) ) /\ v e. B ) -> ph ) |
|
| 45 | 44 | adantr | |- ( ( ( ( ( ph /\ ( x e. B /\ w e. RR+ ) ) /\ z e. RR+ /\ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( ( F |` A ) ` ( x - T ) ) - ( ( F |` A ) ` b ) ) ) < w ) ) /\ v e. B ) /\ ( abs ` ( x - v ) ) < z ) -> ph ) |
| 46 | simp1rl | |- ( ( ( ph /\ ( x e. B /\ w e. RR+ ) ) /\ z e. RR+ /\ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( ( F |` A ) ` ( x - T ) ) - ( ( F |` A ) ` b ) ) ) < w ) ) -> x e. B ) |
|
| 47 | 46 | adantr | |- ( ( ( ( ph /\ ( x e. B /\ w e. RR+ ) ) /\ z e. RR+ /\ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( ( F |` A ) ` ( x - T ) ) - ( ( F |` A ) ` b ) ) ) < w ) ) /\ v e. B ) -> x e. B ) |
| 48 | 47 | adantr | |- ( ( ( ( ( ph /\ ( x e. B /\ w e. RR+ ) ) /\ z e. RR+ /\ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( ( F |` A ) ` ( x - T ) ) - ( ( F |` A ) ` b ) ) ) < w ) ) /\ v e. B ) /\ ( abs ` ( x - v ) ) < z ) -> x e. B ) |
| 49 | simplr | |- ( ( ( ( ( ph /\ ( x e. B /\ w e. RR+ ) ) /\ z e. RR+ /\ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( ( F |` A ) ` ( x - T ) ) - ( ( F |` A ) ` b ) ) ) < w ) ) /\ v e. B ) /\ ( abs ` ( x - v ) ) < z ) -> v e. B ) |
|
| 50 | fvres | |- ( x e. B -> ( ( F |` B ) ` x ) = ( F ` x ) ) |
|
| 51 | 50 | adantl | |- ( ( ph /\ x e. B ) -> ( ( F |` B ) ` x ) = ( F ` x ) ) |
| 52 | 3 | ssrab3 | |- B C_ CC |
| 53 | 52 | sseli | |- ( x e. B -> x e. CC ) |
| 54 | 53 | adantl | |- ( ( ph /\ x e. B ) -> x e. CC ) |
| 55 | 29 | adantr | |- ( ( ph /\ x e. B ) -> T e. CC ) |
| 56 | 54 55 | npcand | |- ( ( ph /\ x e. B ) -> ( ( x - T ) + T ) = x ) |
| 57 | 56 | eqcomd | |- ( ( ph /\ x e. B ) -> x = ( ( x - T ) + T ) ) |
| 58 | 57 | fveq2d | |- ( ( ph /\ x e. B ) -> ( F ` x ) = ( F ` ( ( x - T ) + T ) ) ) |
| 59 | simpl | |- ( ( ph /\ x e. B ) -> ph ) |
|
| 60 | 59 38 | jca | |- ( ( ph /\ x e. B ) -> ( ph /\ ( x - T ) e. A ) ) |
| 61 | eleq1 | |- ( y = ( x - T ) -> ( y e. A <-> ( x - T ) e. A ) ) |
|
| 62 | 61 | anbi2d | |- ( y = ( x - T ) -> ( ( ph /\ y e. A ) <-> ( ph /\ ( x - T ) e. A ) ) ) |
| 63 | fvoveq1 | |- ( y = ( x - T ) -> ( F ` ( y + T ) ) = ( F ` ( ( x - T ) + T ) ) ) |
|
| 64 | fveq2 | |- ( y = ( x - T ) -> ( F ` y ) = ( F ` ( x - T ) ) ) |
|
| 65 | 63 64 | eqeq12d | |- ( y = ( x - T ) -> ( ( F ` ( y + T ) ) = ( F ` y ) <-> ( F ` ( ( x - T ) + T ) ) = ( F ` ( x - T ) ) ) ) |
| 66 | 62 65 | imbi12d | |- ( y = ( x - T ) -> ( ( ( ph /\ y e. A ) -> ( F ` ( y + T ) ) = ( F ` y ) ) <-> ( ( ph /\ ( x - T ) e. A ) -> ( F ` ( ( x - T ) + T ) ) = ( F ` ( x - T ) ) ) ) ) |
| 67 | eleq1 | |- ( x = y -> ( x e. A <-> y e. A ) ) |
|
| 68 | 67 | anbi2d | |- ( x = y -> ( ( ph /\ x e. A ) <-> ( ph /\ y e. A ) ) ) |
| 69 | fvoveq1 | |- ( x = y -> ( F ` ( x + T ) ) = ( F ` ( y + T ) ) ) |
|
| 70 | fveq2 | |- ( x = y -> ( F ` x ) = ( F ` y ) ) |
|
| 71 | 69 70 | eqeq12d | |- ( x = y -> ( ( F ` ( x + T ) ) = ( F ` x ) <-> ( F ` ( y + T ) ) = ( F ` y ) ) ) |
| 72 | 68 71 | imbi12d | |- ( x = y -> ( ( ( ph /\ x e. A ) -> ( F ` ( x + T ) ) = ( F ` x ) ) <-> ( ( ph /\ y e. A ) -> ( F ` ( y + T ) ) = ( F ` y ) ) ) ) |
| 73 | 72 6 | chvarvv | |- ( ( ph /\ y e. A ) -> ( F ` ( y + T ) ) = ( F ` y ) ) |
| 74 | 66 73 | vtoclg | |- ( ( x - T ) e. A -> ( ( ph /\ ( x - T ) e. A ) -> ( F ` ( ( x - T ) + T ) ) = ( F ` ( x - T ) ) ) ) |
| 75 | 38 60 74 | sylc | |- ( ( ph /\ x e. B ) -> ( F ` ( ( x - T ) + T ) ) = ( F ` ( x - T ) ) ) |
| 76 | 38 | fvresd | |- ( ( ph /\ x e. B ) -> ( ( F |` A ) ` ( x - T ) ) = ( F ` ( x - T ) ) ) |
| 77 | 75 76 | eqtr4d | |- ( ( ph /\ x e. B ) -> ( F ` ( ( x - T ) + T ) ) = ( ( F |` A ) ` ( x - T ) ) ) |
| 78 | 51 58 77 | 3eqtrd | |- ( ( ph /\ x e. B ) -> ( ( F |` B ) ` x ) = ( ( F |` A ) ` ( x - T ) ) ) |
| 79 | 78 | 3adant3 | |- ( ( ph /\ x e. B /\ v e. B ) -> ( ( F |` B ) ` x ) = ( ( F |` A ) ` ( x - T ) ) ) |
| 80 | eleq1 | |- ( x = v -> ( x e. B <-> v e. B ) ) |
|
| 81 | 80 | anbi2d | |- ( x = v -> ( ( ph /\ x e. B ) <-> ( ph /\ v e. B ) ) ) |
| 82 | fveq2 | |- ( x = v -> ( ( F |` B ) ` x ) = ( ( F |` B ) ` v ) ) |
|
| 83 | fvoveq1 | |- ( x = v -> ( ( F |` A ) ` ( x - T ) ) = ( ( F |` A ) ` ( v - T ) ) ) |
|
| 84 | 82 83 | eqeq12d | |- ( x = v -> ( ( ( F |` B ) ` x ) = ( ( F |` A ) ` ( x - T ) ) <-> ( ( F |` B ) ` v ) = ( ( F |` A ) ` ( v - T ) ) ) ) |
| 85 | 81 84 | imbi12d | |- ( x = v -> ( ( ( ph /\ x e. B ) -> ( ( F |` B ) ` x ) = ( ( F |` A ) ` ( x - T ) ) ) <-> ( ( ph /\ v e. B ) -> ( ( F |` B ) ` v ) = ( ( F |` A ) ` ( v - T ) ) ) ) ) |
| 86 | 85 78 | chvarvv | |- ( ( ph /\ v e. B ) -> ( ( F |` B ) ` v ) = ( ( F |` A ) ` ( v - T ) ) ) |
| 87 | 86 | 3adant2 | |- ( ( ph /\ x e. B /\ v e. B ) -> ( ( F |` B ) ` v ) = ( ( F |` A ) ` ( v - T ) ) ) |
| 88 | 79 87 | oveq12d | |- ( ( ph /\ x e. B /\ v e. B ) -> ( ( ( F |` B ) ` x ) - ( ( F |` B ) ` v ) ) = ( ( ( F |` A ) ` ( x - T ) ) - ( ( F |` A ) ` ( v - T ) ) ) ) |
| 89 | 88 | fveq2d | |- ( ( ph /\ x e. B /\ v e. B ) -> ( abs ` ( ( ( F |` B ) ` x ) - ( ( F |` B ) ` v ) ) ) = ( abs ` ( ( ( F |` A ) ` ( x - T ) ) - ( ( F |` A ) ` ( v - T ) ) ) ) ) |
| 90 | 45 48 49 89 | syl3anc | |- ( ( ( ( ( ph /\ ( x e. B /\ w e. RR+ ) ) /\ z e. RR+ /\ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( ( F |` A ) ` ( x - T ) ) - ( ( F |` A ) ` b ) ) ) < w ) ) /\ v e. B ) /\ ( abs ` ( x - v ) ) < z ) -> ( abs ` ( ( ( F |` B ) ` x ) - ( ( F |` B ) ` v ) ) ) = ( abs ` ( ( ( F |` A ) ` ( x - T ) ) - ( ( F |` A ) ` ( v - T ) ) ) ) ) |
| 91 | simpr | |- ( ( ( ( ( ph /\ ( x e. B /\ w e. RR+ ) ) /\ z e. RR+ /\ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( ( F |` A ) ` ( x - T ) ) - ( ( F |` A ) ` b ) ) ) < w ) ) /\ v e. B ) /\ ( abs ` ( x - v ) ) < z ) -> ( abs ` ( x - v ) ) < z ) |
|
| 92 | 24 | simpld | |- ( ( ph /\ x e. B ) -> x e. CC ) |
| 93 | 92 | adantr | |- ( ( ( ph /\ x e. B ) /\ v e. B ) -> x e. CC ) |
| 94 | 52 | sseli | |- ( v e. B -> v e. CC ) |
| 95 | 94 | adantl | |- ( ( ( ph /\ x e. B ) /\ v e. B ) -> v e. CC ) |
| 96 | 55 | adantr | |- ( ( ( ph /\ x e. B ) /\ v e. B ) -> T e. CC ) |
| 97 | 93 95 96 | nnncan2d | |- ( ( ( ph /\ x e. B ) /\ v e. B ) -> ( ( x - T ) - ( v - T ) ) = ( x - v ) ) |
| 98 | 97 | fveq2d | |- ( ( ( ph /\ x e. B ) /\ v e. B ) -> ( abs ` ( ( x - T ) - ( v - T ) ) ) = ( abs ` ( x - v ) ) ) |
| 99 | 98 | adantr | |- ( ( ( ( ph /\ x e. B ) /\ v e. B ) /\ ( abs ` ( x - v ) ) < z ) -> ( abs ` ( ( x - T ) - ( v - T ) ) ) = ( abs ` ( x - v ) ) ) |
| 100 | simpr | |- ( ( ( ( ph /\ x e. B ) /\ v e. B ) /\ ( abs ` ( x - v ) ) < z ) -> ( abs ` ( x - v ) ) < z ) |
|
| 101 | 99 100 | eqbrtrd | |- ( ( ( ( ph /\ x e. B ) /\ v e. B ) /\ ( abs ` ( x - v ) ) < z ) -> ( abs ` ( ( x - T ) - ( v - T ) ) ) < z ) |
| 102 | 45 48 49 91 101 | syl1111anc | |- ( ( ( ( ( ph /\ ( x e. B /\ w e. RR+ ) ) /\ z e. RR+ /\ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( ( F |` A ) ` ( x - T ) ) - ( ( F |` A ) ` b ) ) ) < w ) ) /\ v e. B ) /\ ( abs ` ( x - v ) ) < z ) -> ( abs ` ( ( x - T ) - ( v - T ) ) ) < z ) |
| 103 | oveq2 | |- ( b = ( v - T ) -> ( ( x - T ) - b ) = ( ( x - T ) - ( v - T ) ) ) |
|
| 104 | 103 | fveq2d | |- ( b = ( v - T ) -> ( abs ` ( ( x - T ) - b ) ) = ( abs ` ( ( x - T ) - ( v - T ) ) ) ) |
| 105 | 104 | breq1d | |- ( b = ( v - T ) -> ( ( abs ` ( ( x - T ) - b ) ) < z <-> ( abs ` ( ( x - T ) - ( v - T ) ) ) < z ) ) |
| 106 | fveq2 | |- ( b = ( v - T ) -> ( ( F |` A ) ` b ) = ( ( F |` A ) ` ( v - T ) ) ) |
|
| 107 | 106 | oveq2d | |- ( b = ( v - T ) -> ( ( ( F |` A ) ` ( x - T ) ) - ( ( F |` A ) ` b ) ) = ( ( ( F |` A ) ` ( x - T ) ) - ( ( F |` A ) ` ( v - T ) ) ) ) |
| 108 | 107 | fveq2d | |- ( b = ( v - T ) -> ( abs ` ( ( ( F |` A ) ` ( x - T ) ) - ( ( F |` A ) ` b ) ) ) = ( abs ` ( ( ( F |` A ) ` ( x - T ) ) - ( ( F |` A ) ` ( v - T ) ) ) ) ) |
| 109 | 108 | breq1d | |- ( b = ( v - T ) -> ( ( abs ` ( ( ( F |` A ) ` ( x - T ) ) - ( ( F |` A ) ` b ) ) ) < w <-> ( abs ` ( ( ( F |` A ) ` ( x - T ) ) - ( ( F |` A ) ` ( v - T ) ) ) ) < w ) ) |
| 110 | 105 109 | imbi12d | |- ( b = ( v - T ) -> ( ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( ( F |` A ) ` ( x - T ) ) - ( ( F |` A ) ` b ) ) ) < w ) <-> ( ( abs ` ( ( x - T ) - ( v - T ) ) ) < z -> ( abs ` ( ( ( F |` A ) ` ( x - T ) ) - ( ( F |` A ) ` ( v - T ) ) ) ) < w ) ) ) |
| 111 | simpll3 | |- ( ( ( ( ( ph /\ ( x e. B /\ w e. RR+ ) ) /\ z e. RR+ /\ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( ( F |` A ) ` ( x - T ) ) - ( ( F |` A ) ` b ) ) ) < w ) ) /\ v e. B ) /\ ( abs ` ( x - v ) ) < z ) -> A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( ( F |` A ) ` ( x - T ) ) - ( ( F |` A ) ` b ) ) ) < w ) ) |
|
| 112 | oveq1 | |- ( x = v -> ( x - T ) = ( v - T ) ) |
|
| 113 | 112 | eleq1d | |- ( x = v -> ( ( x - T ) e. A <-> ( v - T ) e. A ) ) |
| 114 | 81 113 | imbi12d | |- ( x = v -> ( ( ( ph /\ x e. B ) -> ( x - T ) e. A ) <-> ( ( ph /\ v e. B ) -> ( v - T ) e. A ) ) ) |
| 115 | 114 38 | chvarvv | |- ( ( ph /\ v e. B ) -> ( v - T ) e. A ) |
| 116 | 45 49 115 | syl2anc | |- ( ( ( ( ( ph /\ ( x e. B /\ w e. RR+ ) ) /\ z e. RR+ /\ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( ( F |` A ) ` ( x - T ) ) - ( ( F |` A ) ` b ) ) ) < w ) ) /\ v e. B ) /\ ( abs ` ( x - v ) ) < z ) -> ( v - T ) e. A ) |
| 117 | 110 111 116 | rspcdva | |- ( ( ( ( ( ph /\ ( x e. B /\ w e. RR+ ) ) /\ z e. RR+ /\ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( ( F |` A ) ` ( x - T ) ) - ( ( F |` A ) ` b ) ) ) < w ) ) /\ v e. B ) /\ ( abs ` ( x - v ) ) < z ) -> ( ( abs ` ( ( x - T ) - ( v - T ) ) ) < z -> ( abs ` ( ( ( F |` A ) ` ( x - T ) ) - ( ( F |` A ) ` ( v - T ) ) ) ) < w ) ) |
| 118 | 102 117 | mpd | |- ( ( ( ( ( ph /\ ( x e. B /\ w e. RR+ ) ) /\ z e. RR+ /\ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( ( F |` A ) ` ( x - T ) ) - ( ( F |` A ) ` b ) ) ) < w ) ) /\ v e. B ) /\ ( abs ` ( x - v ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` ( x - T ) ) - ( ( F |` A ) ` ( v - T ) ) ) ) < w ) |
| 119 | 90 118 | eqbrtrd | |- ( ( ( ( ( ph /\ ( x e. B /\ w e. RR+ ) ) /\ z e. RR+ /\ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( ( F |` A ) ` ( x - T ) ) - ( ( F |` A ) ` b ) ) ) < w ) ) /\ v e. B ) /\ ( abs ` ( x - v ) ) < z ) -> ( abs ` ( ( ( F |` B ) ` x ) - ( ( F |` B ) ` v ) ) ) < w ) |
| 120 | 119 | ex | |- ( ( ( ( ph /\ ( x e. B /\ w e. RR+ ) ) /\ z e. RR+ /\ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( ( F |` A ) ` ( x - T ) ) - ( ( F |` A ) ` b ) ) ) < w ) ) /\ v e. B ) -> ( ( abs ` ( x - v ) ) < z -> ( abs ` ( ( ( F |` B ) ` x ) - ( ( F |` B ) ` v ) ) ) < w ) ) |
| 121 | 120 | ralrimiva | |- ( ( ( ph /\ ( x e. B /\ w e. RR+ ) ) /\ z e. RR+ /\ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( ( F |` A ) ` ( x - T ) ) - ( ( F |` A ) ` b ) ) ) < w ) ) -> A. v e. B ( ( abs ` ( x - v ) ) < z -> ( abs ` ( ( ( F |` B ) ` x ) - ( ( F |` B ) ` v ) ) ) < w ) ) |
| 122 | 121 | 3exp | |- ( ( ph /\ ( x e. B /\ w e. RR+ ) ) -> ( z e. RR+ -> ( A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( ( F |` A ) ` ( x - T ) ) - ( ( F |` A ) ` b ) ) ) < w ) -> A. v e. B ( ( abs ` ( x - v ) ) < z -> ( abs ` ( ( ( F |` B ) ` x ) - ( ( F |` B ) ` v ) ) ) < w ) ) ) ) |
| 123 | 122 | reximdvai | |- ( ( ph /\ ( x e. B /\ w e. RR+ ) ) -> ( E. z e. RR+ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( ( F |` A ) ` ( x - T ) ) - ( ( F |` A ) ` b ) ) ) < w ) -> E. z e. RR+ A. v e. B ( ( abs ` ( x - v ) ) < z -> ( abs ` ( ( ( F |` B ) ` x ) - ( ( F |` B ) ` v ) ) ) < w ) ) ) |
| 124 | 43 123 | mpd | |- ( ( ph /\ ( x e. B /\ w e. RR+ ) ) -> E. z e. RR+ A. v e. B ( ( abs ` ( x - v ) ) < z -> ( abs ` ( ( ( F |` B ) ` x ) - ( ( F |` B ) ` v ) ) ) < w ) ) |
| 125 | 124 | ralrimivva | |- ( ph -> A. x e. B A. w e. RR+ E. z e. RR+ A. v e. B ( ( abs ` ( x - v ) ) < z -> ( abs ` ( ( ( F |` B ) ` x ) - ( ( F |` B ) ` v ) ) ) < w ) ) |
| 126 | 52 | a1i | |- ( ph -> B C_ CC ) |
| 127 | ssidd | |- ( ph -> CC C_ CC ) |
|
| 128 | elcncf | |- ( ( B C_ CC /\ CC C_ CC ) -> ( ( F |` B ) e. ( B -cn-> CC ) <-> ( ( F |` B ) : B --> CC /\ A. x e. B A. w e. RR+ E. z e. RR+ A. v e. B ( ( abs ` ( x - v ) ) < z -> ( abs ` ( ( ( F |` B ) ` x ) - ( ( F |` B ) ` v ) ) ) < w ) ) ) ) |
|
| 129 | 126 127 128 | syl2anc | |- ( ph -> ( ( F |` B ) e. ( B -cn-> CC ) <-> ( ( F |` B ) : B --> CC /\ A. x e. B A. w e. RR+ E. z e. RR+ A. v e. B ( ( abs ` ( x - v ) ) < z -> ( abs ` ( ( ( F |` B ) ` x ) - ( ( F |` B ) ` v ) ) ) < w ) ) ) ) |
| 130 | 8 125 129 | mpbir2and | |- ( ph -> ( F |` B ) e. ( B -cn-> CC ) ) |