This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finite sum of functions to complex numbers from a common topological space is continuous, without disjoint var constraint x ph. The class expression for B normally contains free variables k and x to index it. (Contributed by Glauco Siliprandi, 20-Apr-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsumcnf.1 | |- K = ( TopOpen ` CCfld ) |
|
| fsumcnf.2 | |- ( ph -> J e. ( TopOn ` X ) ) |
||
| fsumcnf.3 | |- ( ph -> A e. Fin ) |
||
| fsumcnf.4 | |- ( ( ph /\ k e. A ) -> ( x e. X |-> B ) e. ( J Cn K ) ) |
||
| Assertion | fsumcnf | |- ( ph -> ( x e. X |-> sum_ k e. A B ) e. ( J Cn K ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsumcnf.1 | |- K = ( TopOpen ` CCfld ) |
|
| 2 | fsumcnf.2 | |- ( ph -> J e. ( TopOn ` X ) ) |
|
| 3 | fsumcnf.3 | |- ( ph -> A e. Fin ) |
|
| 4 | fsumcnf.4 | |- ( ( ph /\ k e. A ) -> ( x e. X |-> B ) e. ( J Cn K ) ) |
|
| 5 | nfcv | |- F/_ y sum_ k e. A B |
|
| 6 | nfcv | |- F/_ x A |
|
| 7 | nfcsb1v | |- F/_ x [_ y / x ]_ B |
|
| 8 | 6 7 | nfsum | |- F/_ x sum_ k e. A [_ y / x ]_ B |
| 9 | csbeq1a | |- ( x = y -> B = [_ y / x ]_ B ) |
|
| 10 | 9 | sumeq2sdv | |- ( x = y -> sum_ k e. A B = sum_ k e. A [_ y / x ]_ B ) |
| 11 | 5 8 10 | cbvmpt | |- ( x e. X |-> sum_ k e. A B ) = ( y e. X |-> sum_ k e. A [_ y / x ]_ B ) |
| 12 | nfcv | |- F/_ y B |
|
| 13 | 12 7 9 | cbvmpt | |- ( x e. X |-> B ) = ( y e. X |-> [_ y / x ]_ B ) |
| 14 | 13 4 | eqeltrrid | |- ( ( ph /\ k e. A ) -> ( y e. X |-> [_ y / x ]_ B ) e. ( J Cn K ) ) |
| 15 | 1 2 3 14 | fsumcn | |- ( ph -> ( y e. X |-> sum_ k e. A [_ y / x ]_ B ) e. ( J Cn K ) ) |
| 16 | 11 15 | eqeltrid | |- ( ph -> ( x e. X |-> sum_ k e. A B ) e. ( J Cn K ) ) |