This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a set is a family of subsets of some base set, then so is its finite intersection. (Contributed by Stefan O'Rear, 2-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fipwss | |- ( A C_ ~P X -> ( fi ` A ) C_ ~P X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fiuni | |- ( A e. _V -> U. A = U. ( fi ` A ) ) |
|
| 2 | 1 | sseq1d | |- ( A e. _V -> ( U. A C_ X <-> U. ( fi ` A ) C_ X ) ) |
| 3 | sspwuni | |- ( A C_ ~P X <-> U. A C_ X ) |
|
| 4 | sspwuni | |- ( ( fi ` A ) C_ ~P X <-> U. ( fi ` A ) C_ X ) |
|
| 5 | 2 3 4 | 3bitr4g | |- ( A e. _V -> ( A C_ ~P X <-> ( fi ` A ) C_ ~P X ) ) |
| 6 | 5 | biimpa | |- ( ( A e. _V /\ A C_ ~P X ) -> ( fi ` A ) C_ ~P X ) |
| 7 | fvprc | |- ( -. A e. _V -> ( fi ` A ) = (/) ) |
|
| 8 | 0ss | |- (/) C_ ~P X |
|
| 9 | 7 8 | eqsstrdi | |- ( -. A e. _V -> ( fi ` A ) C_ ~P X ) |
| 10 | 9 | adantr | |- ( ( -. A e. _V /\ A C_ ~P X ) -> ( fi ` A ) C_ ~P X ) |
| 11 | 6 10 | pm2.61ian | |- ( A C_ ~P X -> ( fi ` A ) C_ ~P X ) |