This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function maps a singleton to a singleton iff it is the singleton of an ordered pair. (Contributed by NM, 10-Dec-2003)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsn.1 | |- A e. _V |
|
| fsn.2 | |- B e. _V |
||
| Assertion | fsn | |- ( F : { A } --> { B } <-> F = { <. A , B >. } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsn.1 | |- A e. _V |
|
| 2 | fsn.2 | |- B e. _V |
|
| 3 | opelf | |- ( ( F : { A } --> { B } /\ <. x , y >. e. F ) -> ( x e. { A } /\ y e. { B } ) ) |
|
| 4 | velsn | |- ( x e. { A } <-> x = A ) |
|
| 5 | velsn | |- ( y e. { B } <-> y = B ) |
|
| 6 | 4 5 | anbi12i | |- ( ( x e. { A } /\ y e. { B } ) <-> ( x = A /\ y = B ) ) |
| 7 | 3 6 | sylib | |- ( ( F : { A } --> { B } /\ <. x , y >. e. F ) -> ( x = A /\ y = B ) ) |
| 8 | 7 | ex | |- ( F : { A } --> { B } -> ( <. x , y >. e. F -> ( x = A /\ y = B ) ) ) |
| 9 | 1 | snid | |- A e. { A } |
| 10 | feu | |- ( ( F : { A } --> { B } /\ A e. { A } ) -> E! y e. { B } <. A , y >. e. F ) |
|
| 11 | 9 10 | mpan2 | |- ( F : { A } --> { B } -> E! y e. { B } <. A , y >. e. F ) |
| 12 | 5 | anbi1i | |- ( ( y e. { B } /\ <. A , y >. e. F ) <-> ( y = B /\ <. A , y >. e. F ) ) |
| 13 | opeq2 | |- ( y = B -> <. A , y >. = <. A , B >. ) |
|
| 14 | 13 | eleq1d | |- ( y = B -> ( <. A , y >. e. F <-> <. A , B >. e. F ) ) |
| 15 | 14 | pm5.32i | |- ( ( y = B /\ <. A , y >. e. F ) <-> ( y = B /\ <. A , B >. e. F ) ) |
| 16 | 15 | biancomi | |- ( ( y = B /\ <. A , y >. e. F ) <-> ( <. A , B >. e. F /\ y = B ) ) |
| 17 | 12 16 | bitr2i | |- ( ( <. A , B >. e. F /\ y = B ) <-> ( y e. { B } /\ <. A , y >. e. F ) ) |
| 18 | 17 | eubii | |- ( E! y ( <. A , B >. e. F /\ y = B ) <-> E! y ( y e. { B } /\ <. A , y >. e. F ) ) |
| 19 | 2 | eueqi | |- E! y y = B |
| 20 | 19 | biantru | |- ( <. A , B >. e. F <-> ( <. A , B >. e. F /\ E! y y = B ) ) |
| 21 | euanv | |- ( E! y ( <. A , B >. e. F /\ y = B ) <-> ( <. A , B >. e. F /\ E! y y = B ) ) |
|
| 22 | 20 21 | bitr4i | |- ( <. A , B >. e. F <-> E! y ( <. A , B >. e. F /\ y = B ) ) |
| 23 | df-reu | |- ( E! y e. { B } <. A , y >. e. F <-> E! y ( y e. { B } /\ <. A , y >. e. F ) ) |
|
| 24 | 18 22 23 | 3bitr4i | |- ( <. A , B >. e. F <-> E! y e. { B } <. A , y >. e. F ) |
| 25 | 11 24 | sylibr | |- ( F : { A } --> { B } -> <. A , B >. e. F ) |
| 26 | opeq12 | |- ( ( x = A /\ y = B ) -> <. x , y >. = <. A , B >. ) |
|
| 27 | 26 | eleq1d | |- ( ( x = A /\ y = B ) -> ( <. x , y >. e. F <-> <. A , B >. e. F ) ) |
| 28 | 25 27 | syl5ibrcom | |- ( F : { A } --> { B } -> ( ( x = A /\ y = B ) -> <. x , y >. e. F ) ) |
| 29 | 8 28 | impbid | |- ( F : { A } --> { B } -> ( <. x , y >. e. F <-> ( x = A /\ y = B ) ) ) |
| 30 | opex | |- <. x , y >. e. _V |
|
| 31 | 30 | elsn | |- ( <. x , y >. e. { <. A , B >. } <-> <. x , y >. = <. A , B >. ) |
| 32 | 1 2 | opth2 | |- ( <. x , y >. = <. A , B >. <-> ( x = A /\ y = B ) ) |
| 33 | 31 32 | bitr2i | |- ( ( x = A /\ y = B ) <-> <. x , y >. e. { <. A , B >. } ) |
| 34 | 29 33 | bitrdi | |- ( F : { A } --> { B } -> ( <. x , y >. e. F <-> <. x , y >. e. { <. A , B >. } ) ) |
| 35 | 34 | alrimivv | |- ( F : { A } --> { B } -> A. x A. y ( <. x , y >. e. F <-> <. x , y >. e. { <. A , B >. } ) ) |
| 36 | frel | |- ( F : { A } --> { B } -> Rel F ) |
|
| 37 | 1 2 | relsnop | |- Rel { <. A , B >. } |
| 38 | eqrel | |- ( ( Rel F /\ Rel { <. A , B >. } ) -> ( F = { <. A , B >. } <-> A. x A. y ( <. x , y >. e. F <-> <. x , y >. e. { <. A , B >. } ) ) ) |
|
| 39 | 36 37 38 | sylancl | |- ( F : { A } --> { B } -> ( F = { <. A , B >. } <-> A. x A. y ( <. x , y >. e. F <-> <. x , y >. e. { <. A , B >. } ) ) ) |
| 40 | 35 39 | mpbird | |- ( F : { A } --> { B } -> F = { <. A , B >. } ) |
| 41 | 1 2 | f1osn | |- { <. A , B >. } : { A } -1-1-onto-> { B } |
| 42 | f1oeq1 | |- ( F = { <. A , B >. } -> ( F : { A } -1-1-onto-> { B } <-> { <. A , B >. } : { A } -1-1-onto-> { B } ) ) |
|
| 43 | 41 42 | mpbiri | |- ( F = { <. A , B >. } -> F : { A } -1-1-onto-> { B } ) |
| 44 | f1of | |- ( F : { A } -1-1-onto-> { B } -> F : { A } --> { B } ) |
|
| 45 | 43 44 | syl | |- ( F = { <. A , B >. } -> F : { A } --> { B } ) |
| 46 | 40 45 | impbii | |- ( F : { A } --> { B } <-> F = { <. A , B >. } ) |