This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The class of all functions from a class A into a class B is a set iff B is a set or A is not a set or A is empty. (Contributed by AV, 15-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fsetexb | |- ( { f | f : A --> B } e. _V <-> ( A e/ _V \/ A = (/) \/ B e. _V ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ioran | |- ( -. ( ( A e/ _V \/ A = (/) ) \/ B e. _V ) <-> ( -. ( A e/ _V \/ A = (/) ) /\ -. B e. _V ) ) |
|
| 2 | df-nel | |- ( B e/ _V <-> -. B e. _V ) |
|
| 3 | ioran | |- ( -. ( A e/ _V \/ A = (/) ) <-> ( -. A e/ _V /\ -. A = (/) ) ) |
|
| 4 | nnel | |- ( -. A e/ _V <-> A e. _V ) |
|
| 5 | df-ne | |- ( A =/= (/) <-> -. A = (/) ) |
|
| 6 | 5 | bicomi | |- ( -. A = (/) <-> A =/= (/) ) |
| 7 | 4 6 | anbi12i | |- ( ( -. A e/ _V /\ -. A = (/) ) <-> ( A e. _V /\ A =/= (/) ) ) |
| 8 | 3 7 | bitri | |- ( -. ( A e/ _V \/ A = (/) ) <-> ( A e. _V /\ A =/= (/) ) ) |
| 9 | fsetprcnex | |- ( ( ( A e. _V /\ A =/= (/) ) /\ B e/ _V ) -> { f | f : A --> B } e/ _V ) |
|
| 10 | 9 | ex | |- ( ( A e. _V /\ A =/= (/) ) -> ( B e/ _V -> { f | f : A --> B } e/ _V ) ) |
| 11 | 8 10 | sylbi | |- ( -. ( A e/ _V \/ A = (/) ) -> ( B e/ _V -> { f | f : A --> B } e/ _V ) ) |
| 12 | 2 11 | biimtrrid | |- ( -. ( A e/ _V \/ A = (/) ) -> ( -. B e. _V -> { f | f : A --> B } e/ _V ) ) |
| 13 | 12 | imp | |- ( ( -. ( A e/ _V \/ A = (/) ) /\ -. B e. _V ) -> { f | f : A --> B } e/ _V ) |
| 14 | 1 13 | sylbi | |- ( -. ( ( A e/ _V \/ A = (/) ) \/ B e. _V ) -> { f | f : A --> B } e/ _V ) |
| 15 | df-nel | |- ( { f | f : A --> B } e/ _V <-> -. { f | f : A --> B } e. _V ) |
|
| 16 | 14 15 | sylib | |- ( -. ( ( A e/ _V \/ A = (/) ) \/ B e. _V ) -> -. { f | f : A --> B } e. _V ) |
| 17 | 16 | con4i | |- ( { f | f : A --> B } e. _V -> ( ( A e/ _V \/ A = (/) ) \/ B e. _V ) ) |
| 18 | df-3or | |- ( ( A e/ _V \/ A = (/) \/ B e. _V ) <-> ( ( A e/ _V \/ A = (/) ) \/ B e. _V ) ) |
|
| 19 | 17 18 | sylibr | |- ( { f | f : A --> B } e. _V -> ( A e/ _V \/ A = (/) \/ B e. _V ) ) |
| 20 | fsetdmprc0 | |- ( A e/ _V -> { f | f Fn A } = (/) ) |
|
| 21 | ffn | |- ( f : A --> B -> f Fn A ) |
|
| 22 | 21 | ss2abi | |- { f | f : A --> B } C_ { f | f Fn A } |
| 23 | sseq0 | |- ( ( { f | f : A --> B } C_ { f | f Fn A } /\ { f | f Fn A } = (/) ) -> { f | f : A --> B } = (/) ) |
|
| 24 | 22 23 | mpan | |- ( { f | f Fn A } = (/) -> { f | f : A --> B } = (/) ) |
| 25 | 0ex | |- (/) e. _V |
|
| 26 | 24 25 | eqeltrdi | |- ( { f | f Fn A } = (/) -> { f | f : A --> B } e. _V ) |
| 27 | 20 26 | syl | |- ( A e/ _V -> { f | f : A --> B } e. _V ) |
| 28 | feq2 | |- ( A = (/) -> ( f : A --> B <-> f : (/) --> B ) ) |
|
| 29 | 28 | abbidv | |- ( A = (/) -> { f | f : A --> B } = { f | f : (/) --> B } ) |
| 30 | fset0 | |- { f | f : (/) --> B } = { (/) } |
|
| 31 | 29 30 | eqtrdi | |- ( A = (/) -> { f | f : A --> B } = { (/) } ) |
| 32 | p0ex | |- { (/) } e. _V |
|
| 33 | 31 32 | eqeltrdi | |- ( A = (/) -> { f | f : A --> B } e. _V ) |
| 34 | fsetex | |- ( B e. _V -> { f | f : A --> B } e. _V ) |
|
| 35 | 27 33 34 | 3jaoi | |- ( ( A e/ _V \/ A = (/) \/ B e. _V ) -> { f | f : A --> B } e. _V ) |
| 36 | 19 35 | impbii | |- ( { f | f : A --> B } e. _V <-> ( A e/ _V \/ A = (/) \/ B e. _V ) ) |