This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The class of all functions from a nonempty set A into a class B is a set iff B is a set . (Contributed by AV, 15-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fsetcdmex | |- ( ( A e. V /\ A =/= (/) ) -> ( B e. _V <-> { f | f : A --> B } e. _V ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsetex | |- ( B e. _V -> { f | f : A --> B } e. _V ) |
|
| 2 | fsetprcnex | |- ( ( ( A e. V /\ A =/= (/) ) /\ B e/ _V ) -> { f | f : A --> B } e/ _V ) |
|
| 3 | 2 | ex | |- ( ( A e. V /\ A =/= (/) ) -> ( B e/ _V -> { f | f : A --> B } e/ _V ) ) |
| 4 | df-nel | |- ( B e/ _V <-> -. B e. _V ) |
|
| 5 | df-nel | |- ( { f | f : A --> B } e/ _V <-> -. { f | f : A --> B } e. _V ) |
|
| 6 | 3 4 5 | 3imtr3g | |- ( ( A e. V /\ A =/= (/) ) -> ( -. B e. _V -> -. { f | f : A --> B } e. _V ) ) |
| 7 | 6 | con4d | |- ( ( A e. V /\ A =/= (/) ) -> ( { f | f : A --> B } e. _V -> B e. _V ) ) |
| 8 | 1 7 | impbid2 | |- ( ( A e. V /\ A =/= (/) ) -> ( B e. _V <-> { f | f : A --> B } e. _V ) ) |