This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: One half of fseqen . (Contributed by Mario Carneiro, 18-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fseqdom | |- ( A e. V -> ( _om X. A ) ~<_ U_ n e. _om ( A ^m n ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omex | |- _om e. _V |
|
| 2 | ovex | |- ( A ^m n ) e. _V |
|
| 3 | 1 2 | iunex | |- U_ n e. _om ( A ^m n ) e. _V |
| 4 | xp1st | |- ( x e. ( _om X. A ) -> ( 1st ` x ) e. _om ) |
|
| 5 | peano2 | |- ( ( 1st ` x ) e. _om -> suc ( 1st ` x ) e. _om ) |
|
| 6 | 4 5 | syl | |- ( x e. ( _om X. A ) -> suc ( 1st ` x ) e. _om ) |
| 7 | xp2nd | |- ( x e. ( _om X. A ) -> ( 2nd ` x ) e. A ) |
|
| 8 | fconst6g | |- ( ( 2nd ` x ) e. A -> ( suc ( 1st ` x ) X. { ( 2nd ` x ) } ) : suc ( 1st ` x ) --> A ) |
|
| 9 | 7 8 | syl | |- ( x e. ( _om X. A ) -> ( suc ( 1st ` x ) X. { ( 2nd ` x ) } ) : suc ( 1st ` x ) --> A ) |
| 10 | 9 | adantl | |- ( ( A e. V /\ x e. ( _om X. A ) ) -> ( suc ( 1st ` x ) X. { ( 2nd ` x ) } ) : suc ( 1st ` x ) --> A ) |
| 11 | elmapg | |- ( ( A e. V /\ suc ( 1st ` x ) e. _om ) -> ( ( suc ( 1st ` x ) X. { ( 2nd ` x ) } ) e. ( A ^m suc ( 1st ` x ) ) <-> ( suc ( 1st ` x ) X. { ( 2nd ` x ) } ) : suc ( 1st ` x ) --> A ) ) |
|
| 12 | 6 11 | sylan2 | |- ( ( A e. V /\ x e. ( _om X. A ) ) -> ( ( suc ( 1st ` x ) X. { ( 2nd ` x ) } ) e. ( A ^m suc ( 1st ` x ) ) <-> ( suc ( 1st ` x ) X. { ( 2nd ` x ) } ) : suc ( 1st ` x ) --> A ) ) |
| 13 | 10 12 | mpbird | |- ( ( A e. V /\ x e. ( _om X. A ) ) -> ( suc ( 1st ` x ) X. { ( 2nd ` x ) } ) e. ( A ^m suc ( 1st ` x ) ) ) |
| 14 | oveq2 | |- ( n = suc ( 1st ` x ) -> ( A ^m n ) = ( A ^m suc ( 1st ` x ) ) ) |
|
| 15 | 14 | eliuni | |- ( ( suc ( 1st ` x ) e. _om /\ ( suc ( 1st ` x ) X. { ( 2nd ` x ) } ) e. ( A ^m suc ( 1st ` x ) ) ) -> ( suc ( 1st ` x ) X. { ( 2nd ` x ) } ) e. U_ n e. _om ( A ^m n ) ) |
| 16 | 6 13 15 | syl2an2 | |- ( ( A e. V /\ x e. ( _om X. A ) ) -> ( suc ( 1st ` x ) X. { ( 2nd ` x ) } ) e. U_ n e. _om ( A ^m n ) ) |
| 17 | 16 | ex | |- ( A e. V -> ( x e. ( _om X. A ) -> ( suc ( 1st ` x ) X. { ( 2nd ` x ) } ) e. U_ n e. _om ( A ^m n ) ) ) |
| 18 | nsuceq0 | |- suc ( 1st ` x ) =/= (/) |
|
| 19 | fvex | |- ( 2nd ` x ) e. _V |
|
| 20 | 19 | snnz | |- { ( 2nd ` x ) } =/= (/) |
| 21 | xp11 | |- ( ( suc ( 1st ` x ) =/= (/) /\ { ( 2nd ` x ) } =/= (/) ) -> ( ( suc ( 1st ` x ) X. { ( 2nd ` x ) } ) = ( suc ( 1st ` y ) X. { ( 2nd ` y ) } ) <-> ( suc ( 1st ` x ) = suc ( 1st ` y ) /\ { ( 2nd ` x ) } = { ( 2nd ` y ) } ) ) ) |
|
| 22 | 18 20 21 | mp2an | |- ( ( suc ( 1st ` x ) X. { ( 2nd ` x ) } ) = ( suc ( 1st ` y ) X. { ( 2nd ` y ) } ) <-> ( suc ( 1st ` x ) = suc ( 1st ` y ) /\ { ( 2nd ` x ) } = { ( 2nd ` y ) } ) ) |
| 23 | xp1st | |- ( y e. ( _om X. A ) -> ( 1st ` y ) e. _om ) |
|
| 24 | peano4 | |- ( ( ( 1st ` x ) e. _om /\ ( 1st ` y ) e. _om ) -> ( suc ( 1st ` x ) = suc ( 1st ` y ) <-> ( 1st ` x ) = ( 1st ` y ) ) ) |
|
| 25 | 4 23 24 | syl2an | |- ( ( x e. ( _om X. A ) /\ y e. ( _om X. A ) ) -> ( suc ( 1st ` x ) = suc ( 1st ` y ) <-> ( 1st ` x ) = ( 1st ` y ) ) ) |
| 26 | sneqbg | |- ( ( 2nd ` x ) e. _V -> ( { ( 2nd ` x ) } = { ( 2nd ` y ) } <-> ( 2nd ` x ) = ( 2nd ` y ) ) ) |
|
| 27 | 19 26 | mp1i | |- ( ( x e. ( _om X. A ) /\ y e. ( _om X. A ) ) -> ( { ( 2nd ` x ) } = { ( 2nd ` y ) } <-> ( 2nd ` x ) = ( 2nd ` y ) ) ) |
| 28 | 25 27 | anbi12d | |- ( ( x e. ( _om X. A ) /\ y e. ( _om X. A ) ) -> ( ( suc ( 1st ` x ) = suc ( 1st ` y ) /\ { ( 2nd ` x ) } = { ( 2nd ` y ) } ) <-> ( ( 1st ` x ) = ( 1st ` y ) /\ ( 2nd ` x ) = ( 2nd ` y ) ) ) ) |
| 29 | 22 28 | bitrid | |- ( ( x e. ( _om X. A ) /\ y e. ( _om X. A ) ) -> ( ( suc ( 1st ` x ) X. { ( 2nd ` x ) } ) = ( suc ( 1st ` y ) X. { ( 2nd ` y ) } ) <-> ( ( 1st ` x ) = ( 1st ` y ) /\ ( 2nd ` x ) = ( 2nd ` y ) ) ) ) |
| 30 | xpopth | |- ( ( x e. ( _om X. A ) /\ y e. ( _om X. A ) ) -> ( ( ( 1st ` x ) = ( 1st ` y ) /\ ( 2nd ` x ) = ( 2nd ` y ) ) <-> x = y ) ) |
|
| 31 | 29 30 | bitrd | |- ( ( x e. ( _om X. A ) /\ y e. ( _om X. A ) ) -> ( ( suc ( 1st ` x ) X. { ( 2nd ` x ) } ) = ( suc ( 1st ` y ) X. { ( 2nd ` y ) } ) <-> x = y ) ) |
| 32 | 31 | a1i | |- ( A e. V -> ( ( x e. ( _om X. A ) /\ y e. ( _om X. A ) ) -> ( ( suc ( 1st ` x ) X. { ( 2nd ` x ) } ) = ( suc ( 1st ` y ) X. { ( 2nd ` y ) } ) <-> x = y ) ) ) |
| 33 | 17 32 | dom2d | |- ( A e. V -> ( U_ n e. _om ( A ^m n ) e. _V -> ( _om X. A ) ~<_ U_ n e. _om ( A ^m n ) ) ) |
| 34 | 3 33 | mpi | |- ( A e. V -> ( _om X. A ) ~<_ U_ n e. _om ( A ^m n ) ) |