This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Predecessor class is unaffected by restriction to the base class. (Contributed by Scott Fenton, 25-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | predres | |- Pred ( R , A , X ) = Pred ( ( R |` A ) , A , X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab2 | |- { y e. A | y R X } C_ A |
|
| 2 | sseqin2 | |- ( { y e. A | y R X } C_ A <-> ( A i^i { y e. A | y R X } ) = { y e. A | y R X } ) |
|
| 3 | 1 2 | mpbi | |- ( A i^i { y e. A | y R X } ) = { y e. A | y R X } |
| 4 | dfrab2 | |- { y e. A | y R X } = ( { y | y R X } i^i A ) |
|
| 5 | 3 4 | eqtr2i | |- ( { y | y R X } i^i A ) = ( A i^i { y e. A | y R X } ) |
| 6 | iniseg | |- ( X e. _V -> ( `' R " { X } ) = { y | y R X } ) |
|
| 7 | 6 | ineq2d | |- ( X e. _V -> ( A i^i ( `' R " { X } ) ) = ( A i^i { y | y R X } ) ) |
| 8 | incom | |- ( A i^i { y | y R X } ) = ( { y | y R X } i^i A ) |
|
| 9 | 7 8 | eqtrdi | |- ( X e. _V -> ( A i^i ( `' R " { X } ) ) = ( { y | y R X } i^i A ) ) |
| 10 | iniseg | |- ( X e. _V -> ( `' ( R |` A ) " { X } ) = { y | y ( R |` A ) X } ) |
|
| 11 | brres | |- ( X e. _V -> ( y ( R |` A ) X <-> ( y e. A /\ y R X ) ) ) |
|
| 12 | 11 | abbidv | |- ( X e. _V -> { y | y ( R |` A ) X } = { y | ( y e. A /\ y R X ) } ) |
| 13 | df-rab | |- { y e. A | y R X } = { y | ( y e. A /\ y R X ) } |
|
| 14 | 12 13 | eqtr4di | |- ( X e. _V -> { y | y ( R |` A ) X } = { y e. A | y R X } ) |
| 15 | 10 14 | eqtrd | |- ( X e. _V -> ( `' ( R |` A ) " { X } ) = { y e. A | y R X } ) |
| 16 | 15 | ineq2d | |- ( X e. _V -> ( A i^i ( `' ( R |` A ) " { X } ) ) = ( A i^i { y e. A | y R X } ) ) |
| 17 | 5 9 16 | 3eqtr4a | |- ( X e. _V -> ( A i^i ( `' R " { X } ) ) = ( A i^i ( `' ( R |` A ) " { X } ) ) ) |
| 18 | df-pred | |- Pred ( R , A , X ) = ( A i^i ( `' R " { X } ) ) |
|
| 19 | df-pred | |- Pred ( ( R |` A ) , A , X ) = ( A i^i ( `' ( R |` A ) " { X } ) ) |
|
| 20 | 17 18 19 | 3eqtr4g | |- ( X e. _V -> Pred ( R , A , X ) = Pred ( ( R |` A ) , A , X ) ) |
| 21 | predprc | |- ( -. X e. _V -> Pred ( R , A , X ) = (/) ) |
|
| 22 | predprc | |- ( -. X e. _V -> Pred ( ( R |` A ) , A , X ) = (/) ) |
|
| 23 | 21 22 | eqtr4d | |- ( -. X e. _V -> Pred ( R , A , X ) = Pred ( ( R |` A ) , A , X ) ) |
| 24 | 20 23 | pm2.61i | |- Pred ( R , A , X ) = Pred ( ( R |` A ) , A , X ) |