This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subset carries from relation to predecessor class. (Contributed by Scott Fenton, 25-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | predrelss | |- ( R C_ S -> Pred ( R , A , X ) C_ Pred ( S , A , X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvss | |- ( R C_ S -> `' R C_ `' S ) |
|
| 2 | imass1 | |- ( `' R C_ `' S -> ( `' R " { X } ) C_ ( `' S " { X } ) ) |
|
| 3 | sslin | |- ( ( `' R " { X } ) C_ ( `' S " { X } ) -> ( A i^i ( `' R " { X } ) ) C_ ( A i^i ( `' S " { X } ) ) ) |
|
| 4 | 1 2 3 | 3syl | |- ( R C_ S -> ( A i^i ( `' R " { X } ) ) C_ ( A i^i ( `' S " { X } ) ) ) |
| 5 | df-pred | |- Pred ( R , A , X ) = ( A i^i ( `' R " { X } ) ) |
|
| 6 | df-pred | |- Pred ( S , A , X ) = ( A i^i ( `' S " { X } ) ) |
|
| 7 | 4 5 6 | 3sstr4g | |- ( R C_ S -> Pred ( R , A , X ) C_ Pred ( S , A , X ) ) |