This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If R is transitive over A and Y R X , then Pred ( R , A , Y ) is a subclass of Pred ( R , A , X ) . (Contributed by Scott Fenton, 28-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | predtrss | |- ( ( ( ( R i^i ( A X. A ) ) o. ( R i^i ( A X. A ) ) ) C_ R /\ Y e. Pred ( R , A , X ) /\ X e. A ) -> Pred ( R , A , Y ) C_ Pred ( R , A , X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | |- ( ( ( ( ( R i^i ( A X. A ) ) o. ( R i^i ( A X. A ) ) ) C_ R /\ Y e. Pred ( R , A , X ) /\ X e. A ) /\ z e. A ) -> z e. A ) |
|
| 2 | predel | |- ( Y e. Pred ( R , A , X ) -> Y e. A ) |
|
| 3 | 2 | 3ad2ant2 | |- ( ( ( ( R i^i ( A X. A ) ) o. ( R i^i ( A X. A ) ) ) C_ R /\ Y e. Pred ( R , A , X ) /\ X e. A ) -> Y e. A ) |
| 4 | 3 | adantr | |- ( ( ( ( ( R i^i ( A X. A ) ) o. ( R i^i ( A X. A ) ) ) C_ R /\ Y e. Pred ( R , A , X ) /\ X e. A ) /\ z e. A ) -> Y e. A ) |
| 5 | brxp | |- ( z ( A X. A ) Y <-> ( z e. A /\ Y e. A ) ) |
|
| 6 | 1 4 5 | sylanbrc | |- ( ( ( ( ( R i^i ( A X. A ) ) o. ( R i^i ( A X. A ) ) ) C_ R /\ Y e. Pred ( R , A , X ) /\ X e. A ) /\ z e. A ) -> z ( A X. A ) Y ) |
| 7 | brin | |- ( z ( R i^i ( A X. A ) ) Y <-> ( z R Y /\ z ( A X. A ) Y ) ) |
|
| 8 | elpredimg | |- ( ( X e. A /\ Y e. Pred ( R , A , X ) ) -> Y R X ) |
|
| 9 | 8 | ancoms | |- ( ( Y e. Pred ( R , A , X ) /\ X e. A ) -> Y R X ) |
| 10 | 9 | 3adant1 | |- ( ( ( ( R i^i ( A X. A ) ) o. ( R i^i ( A X. A ) ) ) C_ R /\ Y e. Pred ( R , A , X ) /\ X e. A ) -> Y R X ) |
| 11 | 10 | adantr | |- ( ( ( ( ( R i^i ( A X. A ) ) o. ( R i^i ( A X. A ) ) ) C_ R /\ Y e. Pred ( R , A , X ) /\ X e. A ) /\ z e. A ) -> Y R X ) |
| 12 | simpl3 | |- ( ( ( ( ( R i^i ( A X. A ) ) o. ( R i^i ( A X. A ) ) ) C_ R /\ Y e. Pred ( R , A , X ) /\ X e. A ) /\ z e. A ) -> X e. A ) |
|
| 13 | brxp | |- ( Y ( A X. A ) X <-> ( Y e. A /\ X e. A ) ) |
|
| 14 | 4 12 13 | sylanbrc | |- ( ( ( ( ( R i^i ( A X. A ) ) o. ( R i^i ( A X. A ) ) ) C_ R /\ Y e. Pred ( R , A , X ) /\ X e. A ) /\ z e. A ) -> Y ( A X. A ) X ) |
| 15 | brin | |- ( Y ( R i^i ( A X. A ) ) X <-> ( Y R X /\ Y ( A X. A ) X ) ) |
|
| 16 | 11 14 15 | sylanbrc | |- ( ( ( ( ( R i^i ( A X. A ) ) o. ( R i^i ( A X. A ) ) ) C_ R /\ Y e. Pred ( R , A , X ) /\ X e. A ) /\ z e. A ) -> Y ( R i^i ( A X. A ) ) X ) |
| 17 | breq2 | |- ( y = Y -> ( z ( R i^i ( A X. A ) ) y <-> z ( R i^i ( A X. A ) ) Y ) ) |
|
| 18 | breq1 | |- ( y = Y -> ( y ( R i^i ( A X. A ) ) X <-> Y ( R i^i ( A X. A ) ) X ) ) |
|
| 19 | 17 18 | anbi12d | |- ( y = Y -> ( ( z ( R i^i ( A X. A ) ) y /\ y ( R i^i ( A X. A ) ) X ) <-> ( z ( R i^i ( A X. A ) ) Y /\ Y ( R i^i ( A X. A ) ) X ) ) ) |
| 20 | 19 | spcegv | |- ( Y e. Pred ( R , A , X ) -> ( ( z ( R i^i ( A X. A ) ) Y /\ Y ( R i^i ( A X. A ) ) X ) -> E. y ( z ( R i^i ( A X. A ) ) y /\ y ( R i^i ( A X. A ) ) X ) ) ) |
| 21 | 20 | 3ad2ant2 | |- ( ( ( ( R i^i ( A X. A ) ) o. ( R i^i ( A X. A ) ) ) C_ R /\ Y e. Pred ( R , A , X ) /\ X e. A ) -> ( ( z ( R i^i ( A X. A ) ) Y /\ Y ( R i^i ( A X. A ) ) X ) -> E. y ( z ( R i^i ( A X. A ) ) y /\ y ( R i^i ( A X. A ) ) X ) ) ) |
| 22 | 21 | adantr | |- ( ( ( ( ( R i^i ( A X. A ) ) o. ( R i^i ( A X. A ) ) ) C_ R /\ Y e. Pred ( R , A , X ) /\ X e. A ) /\ z e. A ) -> ( ( z ( R i^i ( A X. A ) ) Y /\ Y ( R i^i ( A X. A ) ) X ) -> E. y ( z ( R i^i ( A X. A ) ) y /\ y ( R i^i ( A X. A ) ) X ) ) ) |
| 23 | vex | |- z e. _V |
|
| 24 | brcog | |- ( ( z e. _V /\ X e. A ) -> ( z ( ( R i^i ( A X. A ) ) o. ( R i^i ( A X. A ) ) ) X <-> E. y ( z ( R i^i ( A X. A ) ) y /\ y ( R i^i ( A X. A ) ) X ) ) ) |
|
| 25 | 23 12 24 | sylancr | |- ( ( ( ( ( R i^i ( A X. A ) ) o. ( R i^i ( A X. A ) ) ) C_ R /\ Y e. Pred ( R , A , X ) /\ X e. A ) /\ z e. A ) -> ( z ( ( R i^i ( A X. A ) ) o. ( R i^i ( A X. A ) ) ) X <-> E. y ( z ( R i^i ( A X. A ) ) y /\ y ( R i^i ( A X. A ) ) X ) ) ) |
| 26 | 22 25 | sylibrd | |- ( ( ( ( ( R i^i ( A X. A ) ) o. ( R i^i ( A X. A ) ) ) C_ R /\ Y e. Pred ( R , A , X ) /\ X e. A ) /\ z e. A ) -> ( ( z ( R i^i ( A X. A ) ) Y /\ Y ( R i^i ( A X. A ) ) X ) -> z ( ( R i^i ( A X. A ) ) o. ( R i^i ( A X. A ) ) ) X ) ) |
| 27 | simpl1 | |- ( ( ( ( ( R i^i ( A X. A ) ) o. ( R i^i ( A X. A ) ) ) C_ R /\ Y e. Pred ( R , A , X ) /\ X e. A ) /\ z e. A ) -> ( ( R i^i ( A X. A ) ) o. ( R i^i ( A X. A ) ) ) C_ R ) |
|
| 28 | 27 | ssbrd | |- ( ( ( ( ( R i^i ( A X. A ) ) o. ( R i^i ( A X. A ) ) ) C_ R /\ Y e. Pred ( R , A , X ) /\ X e. A ) /\ z e. A ) -> ( z ( ( R i^i ( A X. A ) ) o. ( R i^i ( A X. A ) ) ) X -> z R X ) ) |
| 29 | 26 28 | syld | |- ( ( ( ( ( R i^i ( A X. A ) ) o. ( R i^i ( A X. A ) ) ) C_ R /\ Y e. Pred ( R , A , X ) /\ X e. A ) /\ z e. A ) -> ( ( z ( R i^i ( A X. A ) ) Y /\ Y ( R i^i ( A X. A ) ) X ) -> z R X ) ) |
| 30 | 16 29 | mpan2d | |- ( ( ( ( ( R i^i ( A X. A ) ) o. ( R i^i ( A X. A ) ) ) C_ R /\ Y e. Pred ( R , A , X ) /\ X e. A ) /\ z e. A ) -> ( z ( R i^i ( A X. A ) ) Y -> z R X ) ) |
| 31 | 7 30 | biimtrrid | |- ( ( ( ( ( R i^i ( A X. A ) ) o. ( R i^i ( A X. A ) ) ) C_ R /\ Y e. Pred ( R , A , X ) /\ X e. A ) /\ z e. A ) -> ( ( z R Y /\ z ( A X. A ) Y ) -> z R X ) ) |
| 32 | 6 31 | mpan2d | |- ( ( ( ( ( R i^i ( A X. A ) ) o. ( R i^i ( A X. A ) ) ) C_ R /\ Y e. Pred ( R , A , X ) /\ X e. A ) /\ z e. A ) -> ( z R Y -> z R X ) ) |
| 33 | 32 | imdistanda | |- ( ( ( ( R i^i ( A X. A ) ) o. ( R i^i ( A X. A ) ) ) C_ R /\ Y e. Pred ( R , A , X ) /\ X e. A ) -> ( ( z e. A /\ z R Y ) -> ( z e. A /\ z R X ) ) ) |
| 34 | 23 | elpred | |- ( Y e. Pred ( R , A , X ) -> ( z e. Pred ( R , A , Y ) <-> ( z e. A /\ z R Y ) ) ) |
| 35 | 34 | 3ad2ant2 | |- ( ( ( ( R i^i ( A X. A ) ) o. ( R i^i ( A X. A ) ) ) C_ R /\ Y e. Pred ( R , A , X ) /\ X e. A ) -> ( z e. Pred ( R , A , Y ) <-> ( z e. A /\ z R Y ) ) ) |
| 36 | 23 | elpred | |- ( X e. A -> ( z e. Pred ( R , A , X ) <-> ( z e. A /\ z R X ) ) ) |
| 37 | 36 | 3ad2ant3 | |- ( ( ( ( R i^i ( A X. A ) ) o. ( R i^i ( A X. A ) ) ) C_ R /\ Y e. Pred ( R , A , X ) /\ X e. A ) -> ( z e. Pred ( R , A , X ) <-> ( z e. A /\ z R X ) ) ) |
| 38 | 33 35 37 | 3imtr4d | |- ( ( ( ( R i^i ( A X. A ) ) o. ( R i^i ( A X. A ) ) ) C_ R /\ Y e. Pred ( R , A , X ) /\ X e. A ) -> ( z e. Pred ( R , A , Y ) -> z e. Pred ( R , A , X ) ) ) |
| 39 | 38 | ssrdv | |- ( ( ( ( R i^i ( A X. A ) ) o. ( R i^i ( A X. A ) ) ) C_ R /\ Y e. Pred ( R , A , X ) /\ X e. A ) -> Pred ( R , A , Y ) C_ Pred ( R , A , X ) ) |