This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The union of two functions with disjoint domains. (Contributed by NM, 22-Sep-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fnun | |- ( ( ( F Fn A /\ G Fn B ) /\ ( A i^i B ) = (/) ) -> ( F u. G ) Fn ( A u. B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fn | |- ( F Fn A <-> ( Fun F /\ dom F = A ) ) |
|
| 2 | df-fn | |- ( G Fn B <-> ( Fun G /\ dom G = B ) ) |
|
| 3 | ineq12 | |- ( ( dom F = A /\ dom G = B ) -> ( dom F i^i dom G ) = ( A i^i B ) ) |
|
| 4 | 3 | eqeq1d | |- ( ( dom F = A /\ dom G = B ) -> ( ( dom F i^i dom G ) = (/) <-> ( A i^i B ) = (/) ) ) |
| 5 | 4 | anbi2d | |- ( ( dom F = A /\ dom G = B ) -> ( ( ( Fun F /\ Fun G ) /\ ( dom F i^i dom G ) = (/) ) <-> ( ( Fun F /\ Fun G ) /\ ( A i^i B ) = (/) ) ) ) |
| 6 | funun | |- ( ( ( Fun F /\ Fun G ) /\ ( dom F i^i dom G ) = (/) ) -> Fun ( F u. G ) ) |
|
| 7 | 5 6 | biimtrrdi | |- ( ( dom F = A /\ dom G = B ) -> ( ( ( Fun F /\ Fun G ) /\ ( A i^i B ) = (/) ) -> Fun ( F u. G ) ) ) |
| 8 | dmun | |- dom ( F u. G ) = ( dom F u. dom G ) |
|
| 9 | uneq12 | |- ( ( dom F = A /\ dom G = B ) -> ( dom F u. dom G ) = ( A u. B ) ) |
|
| 10 | 8 9 | eqtrid | |- ( ( dom F = A /\ dom G = B ) -> dom ( F u. G ) = ( A u. B ) ) |
| 11 | 7 10 | jctird | |- ( ( dom F = A /\ dom G = B ) -> ( ( ( Fun F /\ Fun G ) /\ ( A i^i B ) = (/) ) -> ( Fun ( F u. G ) /\ dom ( F u. G ) = ( A u. B ) ) ) ) |
| 12 | df-fn | |- ( ( F u. G ) Fn ( A u. B ) <-> ( Fun ( F u. G ) /\ dom ( F u. G ) = ( A u. B ) ) ) |
|
| 13 | 11 12 | imbitrrdi | |- ( ( dom F = A /\ dom G = B ) -> ( ( ( Fun F /\ Fun G ) /\ ( A i^i B ) = (/) ) -> ( F u. G ) Fn ( A u. B ) ) ) |
| 14 | 13 | expd | |- ( ( dom F = A /\ dom G = B ) -> ( ( Fun F /\ Fun G ) -> ( ( A i^i B ) = (/) -> ( F u. G ) Fn ( A u. B ) ) ) ) |
| 15 | 14 | impcom | |- ( ( ( Fun F /\ Fun G ) /\ ( dom F = A /\ dom G = B ) ) -> ( ( A i^i B ) = (/) -> ( F u. G ) Fn ( A u. B ) ) ) |
| 16 | 15 | an4s | |- ( ( ( Fun F /\ dom F = A ) /\ ( Fun G /\ dom G = B ) ) -> ( ( A i^i B ) = (/) -> ( F u. G ) Fn ( A u. B ) ) ) |
| 17 | 1 2 16 | syl2anb | |- ( ( F Fn A /\ G Fn B ) -> ( ( A i^i B ) = (/) -> ( F u. G ) Fn ( A u. B ) ) ) |
| 18 | 17 | imp | |- ( ( ( F Fn A /\ G Fn B ) /\ ( A i^i B ) = (/) ) -> ( F u. G ) Fn ( A u. B ) ) |